HEMODILUTION & RENAL FUNCTION - A Review

Howard L. Gadboys, M. D.,
Director, Cardio-thoracic Surgical
Research Laboratory
Mount Sinai School of Medicine.
New York

Continuing experience with extracorporeal circulation has resulted
in an increased understanding of the physiology of perfusion. Four and
five hour perfusions can now be conducted with safety equivalent to
that of one hour perfusions performed five years ago. Much of this
safety is attributable to the use of diluents as partial or total substi-
tutes for blood prime in the pump oxygenator. Severe, progressive hy-
potensive and hypovolemic reactions have been mitigated and post-
operative management of critically ill patients has become simplified.
Nevertheless, several problems still remain. Perforusions lasting
longer than five or six hours are still attended by substantial mortality and
much of this mortality is related to the perfusion itself.

Homologous Blood Reactions:

Early experience with cardiopulmonary bypass in dogs revealed the
consistent development of a syndrome characterized by hypoten-
sion, acidosis, effective circulating volume deficits and frequent death.
A similar syndrome was encountered in patients. Comparison of pre- and
postoperative blood volumes, as measured by isotopic techniques,
disclosed substantial postperfusion deficits in both the plasma and
erythrocyte compartments. Those patients suffering the most severe
volume changes were also the ones whose immediate and early post-
operative courses were most stormy. Investigation of the phenomenon in
the experimental animal permitted exclusion of many possible vari-
ables. It became evident that many of the difficulties encountered could
be reproduced by simple exchange infusion of large volumes of homo-
logous donor blood. The results were not substantially altered by
typing and cross matching the blood by available techniques. Employ-
ment of any one of a number of diluents to replace blood was ac-
 companied by striking amelioration of many of these adverse sequellae.

Hemodilution:

Hemodilution, as introduced by Golllan and further developed by
other investigators, has now achieved widespread acceptance. How-
ever, critical information about the nature of an optimal diluent is still
being accumulated. Currently available diluents include isotonic solu-
tions which have no colloid osmotic pressure effect such as saline, Ring-
er’s solution, and 5% dextrose in water. Another group of diluents
widely employed is characterized by hyperosmolality. Principle examples
of this group are 5% dextrose in Ringer’s solution and 5% dextrose in
saline. A third group of diluents partially duplicates the colloid os-
motic effect of plasma. High and low molecular weight dextrans and
serum albumin have been employed to this end. The fourth type of
diluent employed is plasma, either autologous or homologous. Ex-
change infusion of each of these groups of diluents in experimental
animals reveals specific problems attributable to each: (Fig. 1)

- Isotonic, non colloid solutions - constant volume exchange of large
 volumes (100 ml/Kg.) of these fluids results in rapid production of
 severe hypotension. Cardiac output is well maintained and calculated
total peripheral vascular resistance drops precipitously. An initial dilu-
tional acidosis appears which is followed by the development of severe
metabolic acidosis. Approximately 50% of animals so exchanged will
expire during the operative procedure. The reactions are not materi-
ally influenced by addition of large amounts of buffer or by having the
animal inspire high concentrations of carbon dioxide to inhibit lactic
acid production at the cellular level. The reaction is not dependent on
the electrolyte make-up of the diluent being used. In a sense a type
of low peripheral vascular resistance shock is produced. (Fig. 2) Meas-
ured blood volumes and hematocrits remain the same after the initial
dilution indicating no significant changes of intravascular volume.

2. Hypertonic solutions - immediately after onset of constant
volume exchange, the systemic arterial pressure is maintained. Volume-
metric studies reveal a transient augmentation of intravascular compart-
ment by the hyperosmolar solution. Shortly thereafter, however, the in-
travascular volume begins to decline and there is a significant increase in
the hematocrit. As intravascular water loss proceeds, the animal be-
comes hypotensive and substantial hypovolemia is demonstrable.

3. Isotonic low colloid solutions - the response to this group is simi-
lar in most respects to the reactions to hyperosmolar diluents. After a
brief period of stability, there is evidence of intravascular water loss,
hypovolemia, and progressive hypotension and acidosis.
4. Plasma - unlike the other groups of diluents utilized for constant volume exchange, the oncotic effect of plasma appears to protect the animal from most of the changes observed. Arterial pressures are well maintained throughout the exchange infusion and acidosis does not develop despite elimination of additional buffering under these normothermic conditions. The degree of dilution is identical to the other groups indicating that acute anemic anoxia is not the cause of the problem. Dialysis of autologous plasma against Ringer's solution removes all catecholamines and trace elements. This plasma behaves favorably under the conditions of these experiments. All animals subjected to this type of exchange were long term survivors. It should be pointed out that in this type of exchange infusion there is no oxygenating system. This factor would appear to be a limiting one in the use of plasma as a diluent. In addition, homologous plasma produces specific anaphylactoid reactions which limit its usefulness.

At present, it is necessary to understand and accept the limitations of all diluents during hemodilution perfusion and make appropriate corrections. The dilutional and metabolic acidosis (Fig. 3) occurring during hemodilution perfusion requires adjunctive buffering with either organic buffers such as THAM or inorganic buffers such as sodium bicarbonate. The hypertensive reaction and hypovolemic states must be counteracted by substantial degrees of over infusion both during and immediately after perfusion. Further protection can be offered by mild hypothermia during the period of exchange. Considerable safety has been attainable by these methods, however it should be realized that perfusions lasting longer than five or six hours are still attended by substantial morbidity and mortality. An ideal diluent would probably consist of a colloid substance of approximately the same osmotic concentration as plasma proteins but which will not produce allergic reactions and will not undergo substantial changes during oxygenation.

Renal Function:
The presence of a large urine volume during and after perfusion is not in itself indication of optimal renal function. Excretion of urine is the sum of total of many complex physiological occurrences including excretion, reabsorption, extra renal hormonal control, and other specific aspects such as counter current multiplier exchange. It is possible, for example, by blocking reabsorption to have a large volume of urine produced in the face of severely impaired renal function. This is perhaps best illustrated by some numerical data. In the normal man approximately 650 milliliters of plasma per minute pass through the kidneys. Approximately 120 milliliters per minute or urine is filtered at the glomerular level. If none of this urine were absorbed this would result in a urine flow of approximately 7 liters per hour or over 160 liters of urine in a 24 hour period. Obviously then reabsorption occupies a significant role in total urine production. The use of solutes such as glucose or mannitol in the perfusate results in a high concentration of these particles in the urine. Reabsorption of these particles is limited by the kidneys. Consequently, most of the particles pass out into the urine and pull water with them. (Fig. 4) It is therefore possible to have substantial volume of urine produced in the presence of diminished renal plasma flow (occurring secondary to diminished cardiac output) and diminished glomerular filtration rate. Physiological studies during experimental and clinical cardiopulmonary bypass have demonstrated that both renal plasma flow and glomerular filtration rate are in actuality diminished throughout the period of perfusion irrespective of the diluent utilized. The total response may represent only 50% of normal function. Urine flow may also be enhanced by the use of such non reabsorbable solutes as THAM. However, once again the effect is to pull water out by preventing its reabsorption rather than to specifically improve renal function. Some beneficial effects may result from this wash out mechanism. It is extremely important to understand the pattern of renal function and urine flow for whatever diluent is being utilized. Urine osmolality is of substantial help in determining whether oliguria late after perfusion is a result of return to normal reabsorptive mechanisms or is secondary to renal disease. Most renal problems occurring after perfusion are the result of poor renal perfusion due to inadequate cardiac output. Primary renal abnormalities after hemodilution perfusion are relatively rare.

Summary:
Considerable improvement in perfusion and postperfusion mortality and morbidity have resulted from

Figure 3:
Dilutional and metabolic acidosis appearing with constant volume.

Figure 4:
Urine flows during exchange infusion of various diluents. Note high urine volumes with hyperosmolar solutions DRA and D5R.
Monitoring Blood Gases & pH During Open-Heart Operations

Roy H. Clausn, M. D.*

Tensions of oxygen and carbon dioxide, and pH, in blood may be considered indicators of adequacy of lung (and oxygenator) function and tissue perfusion. The cardiologist draws such inferences during preoperative study, and anesthesiologist, surgeon, and extra-corporeal apparatus technician make similar assessments before, during, and after cardiopulmonary bypass.

Malfunction of myocardium or hypovolemia are implied when there are wide arteriovenous differences of oxygen, CO2, or pH. During bypass the implication is inadequate rate of flow. Postoperatively one infers improper blood volume, excess vasoconstriction for which “dilators” or blocking agents are indicated, or poor myocardial contractility requiring stimulation or control of rhythm.

Normally there are 20 cc. of oxygen in 100 cc. of arterial blood (20 volumes percent) and 15 cc. in 100 cc. of venous blood (15 volumes percent). Percent oxygen saturation is approximately 100 percent in arterial blood, 75 percent in venous blood of patients with normal circulation. Thus, 5 cc. oxygen difference (5 volumes percent difference) is equivalent to 25 percent oxygen saturation difference between arterial and venous blood. For practical considerations, 5 percent saturation is approximately 1 volume percent.

Oxygen tension in arterial blood refers to the gas which has diffused through walls of alveoli and capillaries of lung. A human being with normal function of lungs and heart, breathing room air at sea level, has tension (capital P is the symbol for tension; partial pressure is a synonym for tension) of oxygen of approximately 100 mm. Hg in arterial blood, and 35 in venous blood. Fortunately, for ease of remembrance and usefulness of application, there are numerical relationships between percent oxygen saturation and PO2. These may be seen in the oxyhemoglobin dissociation curve.

![Figure 1: Oxyhemoglobin dissociation curve](image)

The oxyhemoglobin dissociation curve shows the relation between percent oxygen saturation and PO2 (partial pressure: oxygen tension). It may be noted there is a ratio of 1:1 up to 10 (10 percent saturation). 10 mm. Hg: 2:1 between PO2 of 20 mm. Hg, equivalent to 40 percent to 70 percent saturation; tapering toward 1:1 again at 90. Thus, PO2 20 mm. Hg is equivalent to 40 percent saturation; 25 mm. Hg is 50 percent saturation: 30 mm. Hg is 60 percent saturation; and 35 mm. Hg is 70 percent saturation. These approximate conversions are helpful to all personnel concerned with perfusion and oxygenation of blood of patients.

What is the importance of knowing percent oxygen saturation of venous blood? Spencer, et. al noted that prediction of survival correlated closely with percent oxygen saturation of venous blood, since the latter corresponds with adequacy of tissue perfusion.

When venous saturation is 70 percent, the team may be confident of supplying tissues with their oxygen requirements. Venous saturations below 60 percent demand correction of causes. For brain function may be depressed if blood flow to the brain is so low that percent oxygen saturation of blood draining from the brain is below 60 percent. Death may be imminent if saturation is below 40 percent. Metabolic acidosis will occur rapidly and progressively at this low saturation.

Arterial blood PO2 normally is 100 mm. Hg. It seems unreasonable to allow patients with heart disease undergoing heart surgery and cardiopulmonary bypass to have lower PO2. There is an exception which is tolerated during cardiopulmonary bypass, where 70 mm. Hg is the lowest value permissible in blood leaving the oxygenator. This corresponds to saturation of 90 percent, the level frequently observed in pediatric and adult patients with heart or lung diseases, and in most normal patients following anesthesia. It is rare that PO2 falls to this level and the drop unusually is transient, using a disc oxygenator. Attempts to raise PO2 from levels below 100 mm. Hg involves increased flow rate of gases or increased disc speeds, both of which lower PCO2. In the interest of physiologic perfusion, it is preferred to maintain near-normal PCO2. In the interest of simplicity, it is preferred to omit the addition of gasses containing carbon dioxide.

Partial pressure of carbon dioxide (PCO2) normally is 38 mm. Hg in arterial blood, 44 mm. Hg in venous blood. The commonest deviation is low PCO2 readily induced with a few deep breaths. Hyperventilation may be due to

* Associate Professor of Surgery, New York University School of Medicine.

Hemodilution & Renal Function

Continued from page 20

the use of diluents to replace blood primes in large volume pump oxyrogenating systems. The various diluents presently available are not in themselves inherently without dangers. Perfusion and postperfusion management must take cognizance of the specific deficits of each of the diluents of appropriate protective measures to be taken. These include overinfusion and buffering. Moreover, the mere presence of a large volume of urine during and immediately after perfusion does not signify excellent renal function. In fact renal function during perfusion, even with optimal hemodilution, is invariably depressed. However, primary renal failure following hemodilution perfusion is rare. Most difficulties with renal function are the result of inadequate cardiac output immediately after cardiopulmonary bypass.

<table>
<thead>
<tr>
<th>Oxygen Saturation</th>
<th>Oxygen Tension</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -10 mm. Hg</td>
<td>1:1</td>
<td></td>
</tr>
<tr>
<td>10 - 35 mm. Hg</td>
<td>1:2</td>
<td></td>
</tr>
<tr>
<td>35 - 100 mm. Hg</td>
<td>1:3</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 2: Normal oxygen relationship between oxygen saturation and tension](image)