Put one drop from "P" syringe in the second 12 x 75 test tube and label it P1.
Put two drops from P syringe in the third test tube and label it P2.
Label the remaining two test tubes S1 and S2. These are regular Lee White clotting tubes.

Draw a 2 cc blood sample from the patient and discard the entire sample and syringe. Then draw 7 cc. of blood into a fresh syringe. Put 1 cc. of blood in each test tube and discard the remaining 2 cc. Start timing as soon as the first cc. of blood enters the T tube. The thrombin "T" tube should clot firmly within 30 seconds. Tilt tubes 75° every 30 seconds.

If enough protamine has been given to bring the patient to normal, the Lee White tubes (S1 and S2) should clot before the protamine tubes (P1 and P2). If the difference between S1, S2 and P1 is less than one minute, more protamine should be given. No more than 25 mg. should be given without another clotting time.

It is of interest to note, in many cases, the valuation amount of heparin used and protamine required following bypass. Thus, using preconceived and rigid ratios of heparin and protamine may not be the most appropriate method.

NOTES—Our determinations of hemolysis are adapted from the method as written in the chapter entitled "Total Heme Pigments", pp. 318-322 of the book "Diagnostic Laboratory Hematology" by George E. Cartwright, M.D., fourth edition.

Dr. Lewis Bosher, Jr., Thoracic and Cardiovascular Surgery, Medical College of Virginia, and Dr. Lyman Fisher, Chief of Hematology, designed this system and I became exposed to it while working for Dr. Lewis Bosher as a technician.

G. Balentine

REFERENCES

Symposium

Answers to earlier SYMPOSIUM questions are trickling in and will be printed as they arrive. In order to give everyone a chance to respond, we are repeating all of these questions this issue with the assurance that any contributions in answer to early questions will be utilized.

The following are a new set of problems to replace the old.

 Question: Describe in detail the rationale and pump-oxygenator circuitry your team prefers during such cases. How does this vary with each type of defect?

2. Given: Concern for the mental outlook of the chronic dialysis patient.
 Question: Explain the outlook your team wishes to develop in the patient, how this is accomplished by the medical personnel, and the effect upon the patients.

3. Given: Patients are to be trained to accomplish dialysis at home.
 Question: Summarize your training program emphasizing what you feel are its strongest points.

4. Given: The aortocoronary bypass graft has probably become the most frequent cardiac procedure of late.
 Question: Describe the rationale, technique and pump-oxygenator circuitry your team favors for this procedure. A discussion of results may also be included, if you like.

5. Given: Organ preservation systems are many and diverse.
 Question: Describe the preservation system you use and why this particular technique was chosen.

6. Given: The increasing amount of interest shown in the impedance plethysmograph (sometimes called the impedance cardiograph).
 Question: Outline the concepts upon which it operates and its potential value to the study of hemodynamics, or a summary of your experience with this unit, if you prefer.

Please reply by letter, include any illustrations you might desire, and send your reply to:

Journal of Extra-Corporeal Technology
287 East Sixth Street
Saint Paul, Minnesota 55101