A Model for Estimating Post-Dilution Hematocrit with Minimal Blood Loss

Robert W. Fletcher
PSICOR, Inc.

Keywords: simulation, computer; hematocrit; circulating blood volume

Abstract

A hematocrit estimator model (HEM) for post dilutional hematocrit prior to cardiopulmonary bypass is presented. The estimator model was tested on 75 adult patients, whose ages range from 36–81 years with a median age of 62.4, undergoing cardiopulmonary bypass.

The estimator model allows an accurate and efficient determination of the hematocrit, after the patient receives large volumes of non-heamic fluid, based on a retrospective analysis of our patient database.

Method

Seventy-five adult patients, undergoing cardio-pulmonary bypass with non-haemic prime, were studied. Each patient was given a crystalloid-colloid prime, containing varying amounts of Plasmalyte-A, with volumes ranging from 2200 to 4133 ml. The priming solution consisted of:

- 200 ml albumin 25%
- 25 gm Mannitol
- Plasmalyte-A
- 10,000 units sodium heparin

Patients were heparinized with 300 units per kilogram and Activated Clotting Times (ACT) were maintained at

Direct communications to: Robert W. Fletcher, PSI-COR, Inc., 16818 via del Campo Court, San Diego, CA 92127

Volume 20, Number 3, Fall 1988

Figure 1 is based on the basic estimator model Eq. One.

\[HCT_{\text{post}} = \frac{E BV \times HCT_{\text{pre}}}{D + E BV} \] Eq. 1

The variables in the hemodilution model are specified as:

- \(HCT_{\text{post}} \) = post dilutional hematocrit
- \(HCT_{\text{pre}} \) = hematocrit predilution (%)
- \(E BV \) = Estimated Blood Volume (ml)
- \(D \) = Dilutional volume of Fluid (ml) (pump prime + cardioplegia + anesthesia fluid)

With addition of dilutional volume \(D \) to the \(E BV \), the final blood volume of the patient becomes:

\[F BV = E BV + D \]

Using \(E BV + D \) as the final blood volume assumes negligible transcappillary diffusion of plasma water across capillary membranes based on Starling forces. Patients in congestive heart failure and patients receiving blood prior to the first CPB hematocrit or blood prime were not used to create the estimator equation.

By computer simulation this information can be useful in planning for the administration of whole blood or packed red blood cells (RBC) to increase the oxygen carrying capacity in the hemodiluted patient.
greater than 400 seconds. Hypothermic autologous blood/crystalloid cardioplegia was used on all cases.

Hematocrit values were measured on a Technicon H1 CBC analyzer. Baseline (post-induction) hematocrit values were obtained approximately 20 minutes prior to bypass. All fluids given by the anesthesia team, after the baseline hematocrit and prior to the first CPB hematocrit, were estimated and added to pump prime and the crystalloid portion of the cardioplegia solution for entry into the estimator equation (D in Eq. 1). About twenty minutes after initiation of CPB and five minutes after the initial dose of cardioplegia was given, blood samples for the hematocrit measurement were drawn from the bypass circuit.

Results

The statistical results relating the actual and the computed hematocrits, derived from Eq. 1, were calculated using standard formulae from statistics. By computer simulation, a regression chart depicting the HEM values from Eq. 1 vs. actual values of 75 patients is shown in Table I.

When the basic equation (Eq. 1) was compared to the actual HCT_{post}, the 75 patients had a correlation coefficient of .84 and a standard error of the estimate = 1.56. The HCT_{post} values are statistically the same (Student t-test) as the values derived from Eq. 1 and Eq. 2 ($p = .4307$ and $t = .1751$). Comparison of Eq. 2 values with HCT_{post} values yielded $p = .4758$ and $t = -.0610$. The degrees of freedom in both tests were 71.

Equation 2 was programmed in Microsoft BASIC into a pocket computer. The program listing is shown below. There may be slight differences in syntax because of the different dialects of BASIC.

| 100 REM VOLUME ESTIMATOR & TARGET HEMOGLOBIN ESTIMATOR |
| 110 INPUT "HEIGHT"; A : A = A * .02802 : REM .02802 IS THE COEFFICIENT |
| 120 INPUT "WEIGHT"; B : B = B * .0867 : REM .0867 IS THE COEFFICIENT |
| 130 INPUT "PRE HCT"; C : C = C * -.00353 : REM -.00353 IS THE COEFFICIENT |
| 140 INPUT "DILUTION"; D : D = D * .575 : REM .575 IS THE COEFFICIENT |
| 150 POSTHCT = A + B + C + D + .6215 : REM .6215 IS THE CONSTANT |
| 160 PRINT "ESTIMATED HEMATOCRIT"; POSTHCT |

Discussion

The accuracy of the HEM is based upon the accuracy of the input data. The most significant source of error can be the inaccurate computation of blood volume from Eq. 3 employed in this method. The blood volume (EBV) may also be approximated by two different models, estimating the blood volume based on body surface area Eq. 4 or an estimation from weight, Eq. 5.

Blood Volume

$$ EBV = \frac{Plasma \, Volume \times 100}{(100 - .87 \times Hct)} \quad Eq. \, 3 $$

$$ + .039 \times (weight \, kg) - .03 \quad Eq. \, 4 $$

$$ EBV = 70 \, ml \times KG \quad Eq. \, 5 $$

- Technicon, Tustin, CA, 92680

Table 1

Hematocrit Estimator Model

75 random patients real vs predicted

| 20 Volume, Number 3, Fall 1988 | The Journal of Extra-Corporeal Technology |

90
Isotope studies have shown that in the normal adult male under 40 years, approximately 60% of body weight is water, in young women 50%. During aging, total blood volume and plasma volume increase slowly according to surface area, until adult blood volumes are reached. Standards based on body surface area are usually considered to be more accurate than from body weight from the biological standpoint.

Weight referenced standards are usually considered to be more convenient to use. Thus, it is recommended to estimate EBV as a function of the body surface area as specified in Eq. 4.

This method provides statistical evidence for using the adjusted model (Eq. 2) to numerically estimate the initial hematocrit after instituting cardiopulmonary bypass, cardioplegia induction, and/or fluid challenge.

In recent years there have been significant advances in computer-aided diagnosis and decision making for cardiopulmonary bypass. These advances are essentially modeling problems, as we gain more insight into ways in which perfusionists approach clinical management. It is increasingly feasible to assist perfusionists in this decision making process by employing computer-based models.

The use of the HEM provides accurate, quantitative prediction of the effects of hemodilution as well as aiding in the decision making process regarding the administering of blood or crystalloid solutions at the initiation of heart-lung bypass.

Reference