Original Article

Whole Blood Platelet Function Assay on the ICHOR™ Point-of-Care Hematology Analyzer

David G.M. Carville, PhD*; Patricia A. Schleckser, MT(ASCP) SH†; Kirk E. Guyer, BS*; Michael Corsello, MS†; Mark M. Walsh, MD‡

*Division of Thrombosis, Array Medical Laboratories at Indiana University, South Bend, Indiana; †Array Medical, Somerville, New Jersey; and ‡St. Joseph’s Medical Center, South Bend, Indiana

Keywords: cardiopulmonary bypass, whole blood, platelet function, point-of-care

ABSTRACT

The role of platelets as the initial defense against insult to the vasculature is well established. Moreover, platelets are now recognized as having a critical role in the acute care settings of cardiopulmonary bypass (CPB) procedures and cardiac catheterization. In the environment of CPB, both platelet count and function have been demonstrated as being markedly compromised during and following the procedure. Unfortunately, current assays that are used to evaluate the parameters of platelet count and function are limited in regard to their utility in a near patient format. Here, we describe a practical, rapid, and user-friendly whole blood platelet function assay that has been developed for the ICHOR™ point-of-care hematology analyzer. This analyzer is capable of performing an eight parameter blood profile including platelet count. In comparable studies, platelet aggregation in whole blood demonstrated good correlation (for ADP the values were n=14, r²=0.81, p=0.0001; for collagen, n=10, r²=0.93, p=0.0001; for ristocetin, n=10, r²=0.89, p=0.0001; and for epinephrine, n=10, r²=0.81, p=0.0003) with traditional platelet-rich aggregometry, which uses increased light transmission as an indication of platelet aggregation. Furthermore, early feasibility studies in CPB patients demonstrated both decreased platelet count and a marked reduction in platelet function peri-procedurally. This new assay of platelet function is extremely suitable for the clinical environment with rapid turnaround time and provides a full hematology profile to enhance transfusion decisions.

Address correspondence to:
David G.M. Carville, PhD
Array Medical
One Harvard Way, Suite 5
Hillsborough Campus
Somerville, NJ 08876

Volume 30, Number 4, December 1998
INTRODUCTION

The anucleate, multifunctional platelet has a very important role in the first line of defense against any challenge to the hemostatic system. Subsequent to vascular injury, platelets adhere to collagen exposed as a result of endothelial denudation. At these sites, they change shape and release adenosine diphosphate (ADP), a physiological agonist which activates additional platelets. The primary hemostatic plug is achieved by the cyclic stimulation of platelets as they aggregate, release other agonists, and interact with the proteins of the coagulation cascade, forming a consolidated clot (1). However, if these processes are not closely regulated by homeostatic feedback mechanisms, the outcome may be either abnormal hemorrhage (bleeding) or thrombosis (clot formation) (2). In both of these pathological conditions, platelets play an important integral part.

The acute care environment of cardiac surgery, where cardiopulmonary bypass (CPB) is required, is one of several clinical settings where platelet function needs to be monitored. In cardiac surgery with CPB (of which more than 350,000 patients undergo procedures annually), many patients are at an increased risk of perioperative hemorrhage, with the subsequent requirement of transfusing blood products due to excessive activation and/or the consumption of platelets (3-5) or to underlying coagulopathies (6). Hemodilution during CPB may also affect the levels of the factors of the coagulation cascade predisposing the patient to excessive bleeding, which is further exacerbated by heparin and/or protamine dosing (7).

It is now well established that the activation and subsequent aggregation of platelets is the pivotal staging event for thrombus formation in acute coronary syndromes including myocardial infarction, unstable angina, and abrupt closure as a result of percutaneous transluminal coronary angioplasty (PTCA) (8-10). To permit optimal intervention in these clinical conditions it is now suggested that treatment regimens should utilize combination therapies of anticoagulation (AC), thrombolytics, and antiplatelet agents, all of which have demonstrated efficacy in significantly reducing the death rate associated with these syndromes (11-15). Indeed, in one study, a 35% reduction in the 30 day composite primary endpoint (death, non-fatal MI, or repeat revascularization) was achieved.

Although the benefits of proper AC and the use of thrombolytics have been recognized for some time, more recently, and following the demonstrated success of aspirin as an antiplatelet agent (16, 17), other, more effective, antiplatelet drugs have been developed. Some of these agents are outlined in Table 1. Although many of these agents have been tested in clinical trials, the first to become commercially available is the chimeric monoclonal antibody 7E3 Fab fragment known as abciximab® or ReoPro® (11-17). Targeting the platelet glycoprotein IIb/IIIa (GPIIb/IIIa) receptor, recognized as the penultimate step in platelet aggregation (18), this agent has been approved for use in high risk PTCA (11, 14, 17).

Clinical trials outlining the utility of this agent include the evaluation of c7E3 in preventing ischemic complications (EPIC trial). Here a 0.25 mg/kg bolus of ReoPro® was administered, and between 80 and 95% blockade of the platelet GPIIb/IIa receptor was achieved. However, it was demonstrated that increased hemorrhage was associated with the regimen (19). The c7E3 antiplatelet therapy in unstable refractory angina (CAPTURE) study was designed to determine the utility of antiplatelet therapy in angioplasty patients diagnosed with unstable refractory angina (20). These patients were treated with ReoPro® for 18-24 hours pre-PTCA and for one hour peri-procedurally. Although a significant reduction in myocardial infarction, re-intervention, or death was observed at 30 days post-PTCA, no difference in overall cardiac event rates was demonstrated six months post procedure. It was therefore suggested that the short-term administration of ReoPro® may be inadequate to achieve maximal results (17, 20).

A major side effect associated with ReoPro® as an antiplatelet therapy has been an increased risk of hemorrhage (21). This has led to the suggestion that it is essential that the patient’s hemostatic status is monitored sequentially throughout the procedure (22). As a non-specific antiplatelet agent, ReoPro® takes a “shotgun” approach to the inhibition of platelet aggregation, and as such it is of utmost importance to quantitate the level of platelet function to permit adequate dosing while minimizing hemorrhagic risk.

Traditional in vitro assessment of platelet function relies on the measurement of platelet aggregation in the presence of an agonist by optical methods (23, 25). Unfortunately, these methods are both laborious and indirect, since they utilize platelet-rich plasma (PRP) devoid of other elements of circulating blood (25), and as such these tests may not accurately reflect the in vivo condition where other blood components have a role in the...
modulation of platelet function. Recognized as having a greater physiological significance, whole blood platelet aggregation has been demonstrated using either increased impedance when platelets aggregate on electrodes, or by the inhibition of blood flow on a filter (25, 26). However, there are inherent limitations to both of these systems which include the natural tendency for platelets to become activated on a surface either in the presence or absence of an activator. Therefore, what is required for optimal determination of platelet function in acute care settings including CPB and PTCA is a near patient assay which accurately mimics the physiological state. Here we describe the utility of the ICHOR™ near patient hematology analyzer in the quantitation of platelet function and compare this mode of evaluation to the current laboratory standard: aggregation in PRP.

MATERIALS AND METHODS

THE ICHOR™ NEAR PATIENT HEMATOLOGY ANALYZER

Developed as a miniaturized near patient hematology analyzer, the ICHOR™ currently provides an eight parameter complete blood count (CBC) measuring: the number of erythrocytes, leukocytes, platelets, direct quantitation of hematocrit, hemoglobin concentration, mean cell volume, mean corpuscular hemoglobin, and the mean corpuscular hemoglobin concentration. Using only 12 µL of whole blood, results for these parameters are provided in print-out format within two minutes. A typical readout is shown in Figure 1. Platelet function is measured on the analyzer following initial CBC including baseline platelet measurement by a short (<5 min) incubation of whole blood in the presence of an agonist and quantitating the non-functional platelets in the sample.

REAGENTS

Vacutainers® containing 3.2% sodium citrate as the AC were used for sample collection for the processing of platelet-rich plasma. The ICHOR platelet function tubes were prepared using 3.2% sodium citrate and solutions of the following agonists: ristocetin, collagen, ADP, epinephrine, and thrombin®. These tubes were used to perform the aggregation assays on the ICHOR analyzer.

REAGENT STABILITY

To determine the stability of the reagents (anticoagulant mixed with agonist in solution) for platelet function evaluation, tubes were prepared with sodium citrate and the appropriate agonist—ADP, collagen, epinephrine, ristocetin, and thrombin at predetermined concentrations. These tubes were stored at -20°C, 2-8°C, 22-25°C (room temperature), and 37°C. The reagents were to be tested for stability at day = 0, 1, 2, 3, 4, 7, 14, weekly thereafter for one month, and monthly thereafter for one year as per NCCLS guidelines.

SAMPLES

Following informed consent, blood samples were collected from healthy volunteers by careful venipuncture technique. Blood was collected without anticoagulant and was immediately aliquoted in 1 mL volumes into tubes containing 3.2% sodium citrate and the agonists described above. An additional tube containing whole blood and AC without agonist was used to establish baseline levels including a whole blood parameter determination as described.

PRP AGGREGATION

Samples from the same healthy volunteers were drawn into vacutainers containing 3.2% sodium citrate and were centrifuged at approximately 200 g for 10 minutes to provide PRP. The platelet-depleted blood was re-centrifuged for 20 minutes at 2000 g to provide platelet poor plasma (PPP). PRP aggregation was measured using the Chronolog platelet aggregometer® against

Figure 1: Representative printout demonstrating platelet aggregation (in presence of collagen) from the ICHOR

(a) Baseline

(b) Platelet aggregation profile
Figure 2: (a) Comparative ADP aggregation data (ICHOR vs. Chronolog); (b) Comparative collagen aggregation data (ICHOR vs. Chronolog); (c) Comparative epinephrine aggregation data (ICHOR vs. Chronolog); (d) Comparative ristocetin aggregation data (ICHOR vs. Chronolog)

PPP. The testing was performed as per the manufacturer’s guidelines.

CLINICAL STUDIES

During cardiac surgery where CPB is required, platelets play a very important role. A clinical feasibility study was conducted to test the utility of the ICHOR analyzer in this setting. Following approval by the Institutional Review Board (St. Joseph’s Medical Center, South Bend, IN) and informed consent, blood samples from patients undergoing CPB were drawn into vacutainers containing buffered sodium citrate. Samples were collected pre, during, and post-procedurally. Within 60 minutes from collection, the blood was aliquoted in 1 mL volumes to tubes containing agonist. These samples were tested in the ICHOR analyzer. Again baseline levels were measured using whole blood samples in the absence of any agonist.

DESCRIPTION OF PLATELET FUNCTION ASSAY

The measurement of platelet function on the ICHOR analyzer uses tested cell counting hematology principles. The platelet count is performed in a diluted sample that is passed through an aperture, thereby interrupting a constant electrical current.
resulting in an electrical impulse which is amplified and sorted to provide the final platelet count in platelets X 10^9/mm^3. In addition, the ICHOR analyzer is capable of providing a histogram of platelet size distribution (Figure 1). In the presence of an agonist, the platelets associate and aggregate. As aggregated platelets exceed the threshold limitations for platelet size, they are therefore no longer counted as a platelet. The differential between the tubes is representative of the functional platelets in the sample.

ANALYSIS

The platelet aggregation data ICHOR versus PRP aggregometry was calculated and is presented as graphs with correlation and probability values.

RESULTS

WHOLE BLOOD VS. PLATELET RICH PLASMA

Comparisons of platelet function in whole blood samples (n=53), taken from healthy volunteers, on the ICHOR analyzer with that of PRP on the Chronolog aggregometer are shown in Figure 2. In these tests, the analysis was performed on paired specimens. To assess the agonist concentration where standard aggregation was achieved as per literature values, all agonists were initially tested on samples from volunteers, who had not taken any substance known to affect platelet function for a minimum of seven days (Table 2). It was observed that WB platelet function demonstrated good correlation to the laboratory reference method using PRP with all agonists tested with the exception of thrombin (data not shown). For ADP, the values were n = 14, r^2 = 0.81, p = 0.0001; for collagen, n = 19, r^2 = 0.93, p = 0.0001; for ristocetin, n = 10, r^2 = 0.89, p = 0.0001; and for epinephrine, n = 10, r^2 = 0.81, p = 0.0003.

CPB PATIENTS PLATELET COUNT AND FUNCTION

In the feasibility study (n = 30) which was undertaken to determine the effect of CPB on both platelet count and function and the potential utility of the ICHOR in this acute care setting, blood samples were drawn into anticoagulant pre CPB, during the procedure, and in the post-procedural unit. Representative profiles of platelet counts for some of these patients are shown in Figure 3. It was demonstrated that in this study, CPB patients were observed to have a lower platelet count during the procedure, which supports the findings of other studies. In addition to reduced platelet count, it was observed that platelet function (comparing pre and post whole blood platelet aggregation in the presence of an agonist) in a number of patients was reduced post CPB. The aggregation profile of one such patient is shown in Figure 4. In this patient, normal platelet aggregation was observed in re-

Table 2: Suggested aggregation levels for each agonist

<table>
<thead>
<tr>
<th>Agonist</th>
<th>Suggested % Aggregation Achievable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>83-100</td>
</tr>
<tr>
<td>Collagen</td>
<td>80-100</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>67-97</td>
</tr>
<tr>
<td>Ristocetin</td>
<td>85-100</td>
</tr>
<tr>
<td>Thrombin*</td>
<td>90-100</td>
</tr>
</tbody>
</table>

*Not used in current studies
sponse to ADP throughout the procedure, whereas marked reduc-
tion in platelet aggregation to epinephrine, collagen, and
ristocetin was shown post CPB.

DISCUSSION

Although the critical role of platelets as the first line of de-
fense against vessel injury has been recognized for some time, it
is now realized that they are also crucial in the acute care set-
ings of CPB and PTCA (10, 27). If dysfunctional (due to the
nature of the procedure in CPB or the use of antiplatelet therapy
in PTCA), serious hemorrhagic complications may occur. In-
stead, one of the common side effects of antiplatelet therapy as
demonstrated in clinical trials is bleeding (21). Furthermore, both
reduced platelet count and excessive postoperative blood loss
are common adverse events in CPB (27-29). It is therefore sug-
gested that by monitoring platelet count and function in these
clinical settings, enhanced platelet outcome may be achieved by
minimizing the rate of morbidity and mortality and also by re-
ducing the length of stay and the need for transfusing blood prod-
ucts. Unfortunately, traditional assays that provide quantitative
evaluation of platelet count and function are either (a) laborious
to perform; (b) not available on a near patient platform suitable
for these settings; or (c) not directly representative of the physi-
ological state (i.e., a PRP sample).

Here we describe the initial feasibility studies of platelet
function on the ICHOR analyzer. This system has demonstrated
utility in providing an eight parameter hematologic profile and
has recently been modified to perform platelet function evalua-
tion. The method of determining platelet function is to measure
total platelet count in a whole blood sample and then to redeter-
dine the number of platelets in the sample in the presence of an
agonist. The difference provides a direct measurement of plate-
let function and may be reported in percentage aggregation units.

In samples obtained from healthy volunteers, it was deter-
mined that platelet aggregation can be determined in whole blood
very efficiently in under two minutes using the ICHOR system
(Figure 1). Hence, the limitations of the traditional aggregation
assays using optical measurements in platelet-rich plasma may
be overcome (30-31). In comparative tests using samples from
healthy volunteers, good correlation (r²>0.8) was observed for
all agonists tested (with the exception of thrombin), as shown
in Figure 2. Although thrombin was tested, it was observed that,
at suggested concentrations, rapid and total hemostasis (clotting)
ocurred in whole blood samples. It is suggested that this may
be due to the interaction of this agonist with other blood com-
ponents including fibrinogen. Additional studies are warranted
to investigate platelet aggregability in whole blood in the pres-
ence of this agonist.

In the samples drawn from patients undergoing CPB pro-
cedures, it was demonstrated that there was a marked reduction
in platelet count during the procedure that approximated nor-
mal values post procedure. This is in concordance with other

REFERENCES

1. Harker LA, Mann KG. Thrombosis and fibrinolysis. In:
Fuster V, Verstraete M, eds. Thrombosis in cardiovascular
2. Badimon L, Badimon JJ, Fuster V. Pathogenesis of throm-
bosis. In: Fuster V, Verstraete M, eds. Thrombosis in car-
diovascular disorders. Philadelphia: WB Saunders 1992:17-
39.
3. Despotis GJ, Levine VL, Goodnough LT. Relationship be-
tween leukocyte count and patient risk for excessive blood
loss after cardiac surgery. Crit Care Med. 1997; 25: 1338-
1346.
4. Sughayer M, Arkin CF. Monitoring coagulation during and
after cardiopulmonary bypass surgery. Thromb Hemost.
5. Woodman RC, Harker LA. Bleeding complications associ-
ated with cardiopulmonary bypass: Review. Blood. 1990;
76: 1680-1697.
during and after cardiopulmonary bypass and their relation-
ship to the bleeding time and nonsurgical blood loss. J

11. Anderson HV, Jordan RE, Weisman HF. Concept and clinical application of platelets glycoprotein IIb/IIIa inhibition with abciximab (c7E3 Fab; ReoPro) for the prevention of acute ischemic syndromes.

