Free Access
Review
Issue
J Extra Corpor Technol
Volume 37, Number 2, June 2005
Page(s) 227 - 235
DOI https://doi.org/10.1051/ject/200537227
Published online 15 June 2005
  1. Longnecker DE, Cheung AT. Pharmacology of inhalational anesthetics. Principles and Practice of Anesthesiology, 2nd ed. St. Louis: Mosby; 1998: 1123. [Google Scholar]
  2. Buylaert WA, Herregods LL, Mortier EP, Bogaert MG. Cardiopulmonary bypass and the pharmacokinetics of drugs. Clin Pharmacokinet. 1989;17:10–26. [CrossRef] [PubMed] [Google Scholar]
  3. Gedney JA, Ghosh S. Pharmacokinetics of analgesics, sedatives and anesthetic agents during cardiopulmonary bypass. Br J Anaesth. 1995;75:344–351. [CrossRef] [Google Scholar]
  4. Campagna JA, Miller KW, Forman SA. Mechanisms of inhaled anesthetics. N Engl J Med. 2003;348:2110–2124. [CrossRef] [PubMed] [Google Scholar]
  5. Mody HI, Liu Y. Evidence for direct actions of general anesthetics on an ion channel protein. A new look at a unified mechanism of action. Anesthesiology. 1994;81:431–432. [CrossRef] [PubMed] [Google Scholar]
  6. Forman SA, Raines DE. Nonanesthetic volatile drugs obey the Meyer-Overton correlation in two molecular protein site models. Anesthesiology. 1998;88:1535–1548. [CrossRef] [PubMed] [Google Scholar]
  7. Miyazaki H, Nakamura Y, Arai T, Kataoka K. Increase of glutamate in astrocytes: a possible mechanism of action of volatile anesthetics. Anesthesiology. 1997;86:1359–1366. [CrossRef] [PubMed] [Google Scholar]
  8. Belhomme D, Peynet J, Louzy M, Launay JM, Kitakaze M, Menasche P. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation. 1999;100(Suppl II):340–344. [CrossRef] [Google Scholar]
  9. DeHert SG, ten Brocke PW, Mertens E, et al. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 2002;97:42–49. [CrossRef] [PubMed] [Google Scholar]
  10. Tanaka K, Ludwig LM, Kersten JR, Pagel PS, Warltier DC. Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology. 2004;100:707–721. [CrossRef] [PubMed] [Google Scholar]
  11. Morgan GE, Murray MJ, Mikhail MS. Clinical Anesthesiology. 3rd ed. New York: McGraw-Hill; 2002:138. [Google Scholar]
  12. Wappler F. Malignant hyperthermia. Eur J Anaesthesiol. 2001;18:632–652. [CrossRef] [PubMed] [Google Scholar]
  13. Islander G, Ording H, Bendixen D, Ranklev Twetman E. Reproducibility of in vitro contracture test results in patients tested for malignant hyperthermia susceptibility. Acta Anaesthesiol Scand. 2002;46:1144–1149. [CrossRef] [Google Scholar]
  14. McCarthy JE. Malignant hyperthermia: pathophysiology, clinical presentation, and treatment. AACN Clin Issues. 2004;15:231–237. [CrossRef] [PubMed] [Google Scholar]
  15. Tuman KJ, McCarthy RJ, Spiess BD, Overfield DM, Ivankovich AD. Effects of nitrous oxide on coronary perfusion after coronary air embolism. Anesthesiology. 1987;67:952–959. [CrossRef] [PubMed] [Google Scholar]
  16. Röpcke H, Wirz S, Bouillon T, Bruhn J, Hoeft A. Pharmacodynamic interaction of nitrous oxide with sevoflurane, desflurane, isoflurane and enflurane in surgical patients: measurements by effects on EEG median power frequency. Eur J Anaesthesiol. 2001;18:440–449. [CrossRef] [PubMed] [Google Scholar]
  17. Amess JAL, Burman JF, Rees GM, Nancekievell DG, Mollin DL. Megaloblastic haemopoiesis in patients receiving nitrous oxide. Lancet. 1978;2:339–342. [CrossRef] [Google Scholar]
  18. Layzer RB. Myeloneuropathy after prolonged exposure to nitrous oxide. Lancet. 1978;2:1227–1230. [CrossRef] [Google Scholar]
  19. Rosseel P, Lauwers LF, Baute L. Halothane treatment in lifethreatening asthma. Intensive Care Med. 1985;11:241–246. [CrossRef] [PubMed] [Google Scholar]
  20. Gut J, Christen U, Huwyler J. Mechanisms of halothane toxicity: novel insights. Pharmacol Ther. 1993;58:133–155. [CrossRef] [Google Scholar]
  21. Reiz S, Balfors E, Sorensen V, Ariola SJ, Friedman A, Truedsson H. Isoflurane: a powerful coronary vasodilatory in patients with coronary artery disease. Anesthesiology. 1983;59:91–97. [CrossRef] [PubMed] [Google Scholar]
  22. Khambatta HJ, Sonntagg H, Larson R, Stephan H, Stone JG, Kettler D. Global and regional blood flow and metabolism during equipotent halothane and isoflurane anesthesia in patients with coronary artery disease. Anesth Analg. 1988;67:665–675. [Google Scholar]
  23. Slogoff S, Keats AS, Dear WE, Abadia A, Lawyer JT, Moulds JP. Steal-prone coronary anatomy and myocardial ischemia associated with four primary anesthetic agents in humans. Anesth Analg. 1991;72:22–27. [Google Scholar]
  24. Fang ZX, Eger EI, Laster MJ, Chortkoff BS, Kandel L, Ionescu P. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and barayme. Anesth Analg. 1995;80:1187–1193. [Google Scholar]
  25. Laster M, Roth P, Eger EI. Fires from the interaction of anesthetics with desiccated absorbent. Anesth Analg. 2004;99:769–774. [CrossRef] [PubMed] [Google Scholar]
  26. Tan PSK. The anesthetic management of circulatory arrest. Br J Hosp Med. 1990;43:36–44. [Google Scholar]
  27. Russo H, Bressolle F. Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet. 1998;13:185–199. [Google Scholar]
  28. Kohrs R, Durieux ME. Ketamine: teaching an old drug new tricks. Anesth Analg. 1998;87:1186–1193. [Google Scholar]
  29. Morison DH. New IV induction anaesthetics. Can J Anaesth. 1993;40:R9–R18. [CrossRef] [PubMed] [Google Scholar]
  30. Tagliente TM. Pharmacoeconomics of propofol in anesthesia. Am J Health Syst Pharm. 1997;54:1953–1562. [CrossRef] [PubMed] [Google Scholar]
  31. Hensley FA, Martin DE, Gravlee GP. A Practical Approach to Cardiac Anesthesia. 3rd ed. Baltimore: Lippincott Williams and Wilkins; 2003:166. [Google Scholar]
  32. Cheng MA, Theard MA, Tempelhoff R. Intravenous agents and intraoperative neuroprotection: beyond barbiturates. Crit Care Clin. 1997;13:185–199. [CrossRef] [Google Scholar]
  33. Sprung J, Ogletree-Hughes ML, Moravec CS. The effects of etomidate on the contractility of failing and nonfailing human heart muscle. Anesth Analg. 2000;91:68–75. [CrossRef] [PubMed] [Google Scholar]
  34. Doenicke AW, Roizen MF, Kugler J, Kroll H, Foss J, Ostwald P. Reducing myoclonus after etomidate. Anesthesiology. 1999;90:113–119. [CrossRef] [PubMed] [Google Scholar]
  35. Hueter L, Schwarzkopf K, Simon M, Bredle D, Fritz H. Pretreatment with sufentanil reduces myoclonus after etomidate. Acta Anaesthesiol Scand. 2003;47:482–484. [CrossRef] [Google Scholar]
  36. Khanderia U, Pandit SK. Use of midazolam hydrochloride in anesthesia. Clin Pharm. 1987;6:533–547. [Google Scholar]
  37. Lowenstein E. Morphine “anesthesia”—a perspective. Anesthesiology. 1971;35:563–565. [CrossRef] [PubMed] [Google Scholar]
  38. Lowenstein E, Hallowell P, Levine FH, Daggett WM, Austen WG, Laver MB. Cardiovascular response to large doses of intravenous morphine in man. N Engl J Med. 1969;281:1389–1393. [CrossRef] [PubMed] [Google Scholar]
  39. Hall RI, Murphy MR, Hug CC. The enflurane sparing effect of sufentanil in dogs. Anesthesiology. 1987;67:518–525. [CrossRef] [PubMed] [Google Scholar]
  40. Leung JM, Goehner P, O’Kelly BF, et al. Isoflurane anesthesia and myocardial ischemia: comparative risk versus sufentanil anesthesia in patients undergoing coronary artery bypass graft surgery. Anesthesiology. 1991;74:838–847. [CrossRef] [PubMed] [Google Scholar]
  41. Slogoff S, Keats AS, Dear WE, et al. Steal-prone coronary anatomy and myocardial ischemia associated with four primary anesthetics agents in humans. Anesth Analg. 1991;72:22–27. [Google Scholar]
  42. Pugsley MK. The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol Ther. 2002;93:51–75. [CrossRef] [Google Scholar]
  43. Cohn LH, Edmunds LH. Cardiac Surgery in the Adult. 2nd ed. New York: McGraw-Hill; 2003:403. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.