Free Access
Issue
J Extra Corpor Technol
Volume 37, Number 4, December 2005
Page(s) 343 - 350
DOI https://doi.org/10.1051/ject/200537343
Published online 15 December 2005
  1. Hill AG, Groom RC, Akl BF, Lefrak EA, Kurusz M. Current paediatric perfusion practice in North America. Perfusion. 1993;8:27–38. [CrossRef] [PubMed] [Google Scholar]
  2. Groom RC, Hill AG, Akl BF, Albus RA, Kurusz M, Lefrak EA. Neonatal cardiopulmonary bypass—a review of current practice in North America. Cardiol Young. 1993;3:353–69. [CrossRef] [Google Scholar]
  3. Groom RC, Hill AG, Kurusz M, et al. Paediatric perfusion practice in North America: an update. Perfusion. 1995;10:393–401. [CrossRef] [PubMed] [Google Scholar]
  4. Cecere G, Groom RC, Forest R, Quinn R, Morton J. A 10-year review of pediatric perfusion practice in North America. Perfusion. 2002;17:83–9. [CrossRef] [PubMed] [Google Scholar]
  5. Gunst G, Terry B, Melchoir R, Searles B, Darling E. Survey of ECMO in the neonate following open-heart surgery. J Extra Corpor Technol. 2005;4:351–54. [Google Scholar]
  6. Bartels C, Gerdes A, Babin-Ebell J, et al. Working group on extra-corporeal circulation and mechanical ventricular assist devices of the German Society for Thoracic and Cardiovascular Surgery. Cardiopulmonary bypass: evidence or experience based? J Thorac Cardiovasc Surg. 2002;124:20–7. [CrossRef] [Google Scholar]
  7. Rodgers EM. Diffusion of Innovations. 4th ed. New York: The Free Press; 1995:7–31. [Google Scholar]
  8. Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991;84(5 Suppl):III422–31. [PubMed] [Google Scholar]
  9. Swan H. The importance of acid-base management for cardiac and cerebral preservation during open heart operations. Surg Gynecol Obstet. 1984;158:391–414. [Google Scholar]
  10. Lawson DS, Walczak R, Lawson AF, et al. North American neonatal extracorporeal membrane oxygenation (ECMO) devices: 2002 survey results. J Extra Corpor Technol. 2004;36:16–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Jonas RA. Hypothermia, circulatory arrest, and the pediatric brain. J Cardiothorac Vasc Anesth. 1996;10:66–74. [CrossRef] [Google Scholar]
  12. Sakamoto T, Kurosawa H, Shin’oka T, Aoki M, Isomatsu Y. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring. J Thorac Cardiovasc Surg. 2004;127:12–9. [CrossRef] [Google Scholar]
  13. du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114:991–1001. [CrossRef] [Google Scholar]
  14. Skaryak LA, Chai PJ, Kern FH, Greeley WJ, Ungerleider RM. Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. J Thorac Cardiovasc Surg. 1995;110:1649–57. [CrossRef] [Google Scholar]
  15. Nollert G, Nagashima M, Bucerius J, et al. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. II. hypoxic versus free radical injury. J Thorac Cardiovasc Surg. 1999; 117:1172–9. [CrossRef] [Google Scholar]
  16. Nollert G, Nagashima M, Bucerius J, Shin’oka T, Jonas RA. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli. J Thorac Cardiovasc Surg. 1999;117:1166–71. [CrossRef] [Google Scholar]
  17. Pearl JM, Thomas DW, Grist G, Duffy JY, Manning PB. Hyperoxia for management of acid-base status during deep hypothermia with circulatory arrest. Ann Thorac Surg. 2000;70:751–5. [CrossRef] [Google Scholar]
  18. Stammers AH, Christensen KA, Lynch J, Zavadil DP, Deptula JJ, Sydzyik RT. Quantitative evaluation of heparin-coated versus nonheparin-coated bypass circuits during cardiopulmonary bypass. J Extra Corpor Technol. 1999;31:135–41. [Google Scholar]
  19. Grossi EA, Kallenbach K, Chau S, et al. Impact of heparin bonding on pediatric cardiopulmonary bypass: a prospective randomized study. Ann Thorac Surg. 2000;70:191–6. [CrossRef] [Google Scholar]
  20. Ozawa T, Yoshihara K, Koyama N, Yamazaki S, Takanashi Y. Superior biocompatibility of heparin-bonded circuits in pediatric cardiopulmonary bypass. Jpn J Thorac Cardiovasc Surg. 1999;47:592–9. [CrossRef] [PubMed] [Google Scholar]
  21. Jensen E, Andreasson S, Bengtsson A, et al. Changes in hemostasis during pediatric heart surgery: impact of a biocompatible heparin-coated perfusion system. Ann Thorac Surg. 2004;77:962–7. [CrossRef] [Google Scholar]
  22. Stammers AH, Mejak BL, Rauch ED, Vang SN, Viessman TW. Factors affecting perfusionists’ decisions on equipment utilization: results of a United States survey. J Extra Corpor Technol. 2000;32:4–10. [Google Scholar]
  23. Jensen E, Andreasson S, Bengtsson A, et al. Influence of two different perfusion systems on inflammatory response in pediatric heart surgery. Ann Thorac Surg. 2003;75:919–25. [CrossRef] [Google Scholar]
  24. Morgan IS, Codispoti M, Sanger K, Mankad PS. Superiority of centrifugal pump over roller pump in paediatric cardiac surgery: prospective randomized trial. Eur J Cardiothorac Surg. 1998;13:526–32. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.