Free Access
J Extra Corpor Technol
Volume 39, Number 4, December 2007
Page(s) 285 - 288
Published online 15 December 2007
  1. Verdonck PR, Siller U, De Wachter DS, De Somer F, Van Nooten G. Hydrodynamical comparison of aortic arch cannulae. Int J Artif Organs. 1998;21:705–13. [CrossRef] [PubMed] [Google Scholar]
  2. De Somer F, Taeymans Y, De Wachter D, Verdonck P, Van Nooten G. Prediction of the clinical performance of adult arterial cannulas. Artif Organs. 2004;28:655–9. [CrossRef] [PubMed] [Google Scholar]
  3. Koh TW, Parker KH, Kon M, Pepper JR. Changes in aortic rotational flow during cardiopulmonary bypass studied by transesophageal echocardiography and magnetic resonance velocity imaging: A potential mechanism for atheroembolism during cardiopulmonary bypass. Heart Vessels. 2001;16:1–8. [CrossRef] [PubMed] [Google Scholar]
  4. Pybus DA. Aortic atheromatous plaque instability associated with rotational aortic flow during cardiopulmonary bypass. Anesth Analg. 2006;103:303–4. [CrossRef] [PubMed] [Google Scholar]
  5. Weinstein GS. Left hemispheric strokes in coronary surgery: Implications for end-hole aortic cannulas. Ann Thorac Surg. 2001;71:128–32. [CrossRef] [Google Scholar]
  6. Cugno M, Nussberger J, Biglioli P, Giovagnoni MG, Gardinali M, Agostoni A. Cardiopulmonary bypass increases plasma bradykinin concentrations. Immunopharmacology. 1999;43:145–7. [CrossRef] [PubMed] [Google Scholar]
  7. Pierangeli A, Masieri V, Bruzzi F, et al. Hemolysis during cardiopulmonary bypass: How to reduce the free hemoglobin by managing the suctioned blood separately. Perfusion. 2001;16:519–24. [CrossRef] [PubMed] [Google Scholar]
  8. Minneci PC, Deans KJ, Zhi H, et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005;115:3409–17. [CrossRef] [PubMed] [Google Scholar]
  9. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42:1589–600. [CrossRef] [PubMed] [Google Scholar]
  10. Delanghe JR, Langlois MR. Haptoglobin polymorphism and body iron stores. Clin Chem Lab Med. 2002;40:212–6. [CrossRef] [PubMed] [Google Scholar]
  11. Philippidis P, Mason JC, Evans BJ, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94:119–26. [CrossRef] [PubMed] [Google Scholar]
  12. Langlois MR, Delanghe JR, De Buyzere ML, Bernard DR, Ouyang J. Effect of haptoglobin on the metabolism of vitamin C. Am J Clin Nutr. 1997;66:606–10. [CrossRef] [Google Scholar]
  13. Chung JH, Gikakis N, Rao AK, Drake TA, Colman RW, Edmunds LHJr Pericardial blood activates the extrinsic coagulation pathway during clinical cardiopulmonary bypass. Circulation. 1996;93:2014–8. [CrossRef] [PubMed] [Google Scholar]
  14. De Somer F, Van Belleghem Y, Caes F, et al. Tissue factor as the main activator of the coagulation system during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2002;123:951–8. [CrossRef] [Google Scholar]
  15. Khalil PN, Ismail M, Kalmar P, von Knobelsdorff G, Marx G. Activation of fibrinolysis in the pericardial cavity after cardiopulmonary bypass. Thromb Haemost. 2004;92:568–74. [CrossRef] [PubMed] [Google Scholar]
  16. Kincaid EH, Jones TJ, Stump DA, et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann Thorac Surg. 2000;70:1296–300. [CrossRef] [Google Scholar]
  17. Habib RH, Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah A. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: Should current practice be changed? J Thorac Cardiovasc Surg. 2003;125:1438–50. [CrossRef] [Google Scholar]
  18. Habib RH, Zacharias A, Schwann TA, Riordan CJ. The independent effects of cardiopulmonary bypass hemodilutional anemia and transfusions on CABG outcomes. Eur J Cardiothorac Surg. 2005;28:512–3. [CrossRef] [Google Scholar]
  19. Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129:391–400. [CrossRef] [Google Scholar]
  20. Karkouti K, Djaiani G, Borger MA, et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann Thorac Surg. 2005;80:1381–7. [CrossRef] [Google Scholar]
  21. Ranucci M, Romitti F, Isgro G, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80:2213–20. [CrossRef] [Google Scholar]
  22. Duebener LF, Sakamoto T, Hatsuoka S, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation. 2001;104(Suppl 1):I260–4. [Google Scholar]
  23. Rex S, Scholz M, Weyland A, Busch T, Schorn B, Buhre W. Intraand extravascular volume status in patients undergoing mitral valve replacement: crystalloid vs. colloid priming of cardiopulmonary bypass. Eur J Anaesthesiol. 2006;23:1–9. [CrossRef] [PubMed] [Google Scholar]
  24. Himpe D, Neels H, De Hert S, Van Cauwelaert P. Adding lactate to the prime solution during hypothermic cardiopulmonary bypass: A quantitative acid-base analysis. Br J Anaesth. 2003;90:440–5. [CrossRef] [Google Scholar]
  25. Amiji M, Park H, Park K. Study on the prevention of surface-induced platelet activation by albumin coating. J Biomater Sci Polym Ed. 1992;3:375–88. [CrossRef] [PubMed] [Google Scholar]
  26. Newland RF, Baker RA, Mazzone AL, Ottens J, Sanderson AJ, Moubarak JR. Removal of glucose from the cardiopulmonary bypass prime: A prospective clinical audit. J ECT. 2004;36:240–4. [Google Scholar]
  27. Khan TA, Bianchi C, Voisine P, Sandmeyer J, Feng J, Sellke FW. Aprotinin inhibits protease-dependent platelet aggregation and thrombosis. Ann Thorac Surg. 2005;79:1545–50. [CrossRef] [Google Scholar]
  28. Peters DC, Noble S. Aprotinin: An update of its pharmacology and therapeutic use in open heart surgery and coronary artery bypass surgery. Drugs. 1999;57:233–60. [CrossRef] [PubMed] [Google Scholar]
  29. Day JR, Landis RC, Taylor KM. Aprotinin and the protease-activated receptor 1 thrombin receptor: antithrombosis, inflammation, and stroke reduction. Semin Cardiothorac Vasc Anesth. 2006;10:132–42. [CrossRef] [PubMed] [Google Scholar]
  30. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65. [CrossRef] [PubMed] [Google Scholar]
  31. Smith PK, Carrier M, Chen JC, et al. Effect of pexelizumab in coronary artery bypass graft surgery with extended aortic cross-clamp time. Ann Thorac Surg. 2006;82:781–8. [CrossRef] [Google Scholar]
  32. Julier K, da Silva R, Garcia C, et al. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: A double-blinded, placebo-controlled, multicenter study. Anesthesiology. 2003;98:1315–27. [CrossRef] [PubMed] [Google Scholar]
  33. Zimmermann AK, Weber N, Aebert H, Ziemer G, Wendel HP. Effect of biopassive and bioactive surface-coatings on the hemocompatibility of membrane oxygenators. J Biomed Mater Res B Appl Biomater. 2007;80:433–9. [CrossRef] [Google Scholar]
  34. de Haan J, Boonstra PW, Monnink SHJ, Ebels T, van Oeveren W. Retransfusion of suctioned blood during cardiopulmonary bypass impairs hemostasis. Ann Thorac Surg. 1995;59:901–7. [CrossRef] [Google Scholar]
  35. Kim HK, Son HS, Fang YH, Park SY, Hwang CM, Sun K. The effects of pulsatile flow upon renal tissue perfusion during cardiopulmonary bypass: A comparative study of pulsatile and nonpulsatile flow. ASAIO J. 2005;51:30–6. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.