Open Access
J Extra Corpor Technol
Volume 40, Number 4, December 2008
Page(s) 257 - 267
Published online 15 December 2008
  1. Kameneva M, Undar A, Antaki J, Watach M, Calhoon J, Borovetz H. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: Factors related to cardiopulmonary bypass. ASAIO J. 1999;45:307–10. [CrossRef] [PubMed] [Google Scholar]
  2. De Somer F. Optimisation of the perfusion circuit and its possible impact on the inflammatory response. J Extra Corpor Technol. 2007;39:285–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Kameneva M. Hemorheology of mechanical blood damage. Presented at the 3rd International Conference on Pediatric Mechanical Circulatory Support and Pediatric CPB, Hershey, PA, 17–19th May 2007. [Google Scholar]
  4. Snyder GK, Sheafor BA. Red blood cells: Centerpiece in the evolution of the vertebrate circulatory system. Am Zool. 1999;39:189–98. [CrossRef] [Google Scholar]
  5. Thurston GB. The viscoelasticity of human blood. Biophys J. 1972;12:1205–17. [CrossRef] [Google Scholar]
  6. Cabrales P. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during anaemia. J Physiol Heart Circ Physiol. 2007;293:H1206–15. [CrossRef] [PubMed] [Google Scholar]
  7. Na N, Owyang J, Taes YE, Delanghe JR. Serum free haptoglobin concentrations in healthy individuals are related to haptoglobin type. Clin Chem. 2005;51:1754–5. [CrossRef] [PubMed] [Google Scholar]
  8. Carter K, Worwood M. Haptoglobin: A review of the major allele frequencies worldwide and their association with diseases. Int J Lab Hematol. 2007;29:92–110. [CrossRef] [PubMed] [Google Scholar]
  9. Tseng CF, Lin CC, Huang HY, Lin HC, Mao SJ. Antioxidant role of human haptoglobin. Proteomics. 2004;4:2221–8. [CrossRef] [PubMed] [Google Scholar]
  10. Langlois M, Delanghe J. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42:1589–600. [CrossRef] [PubMed] [Google Scholar]
  11. Körmöczi GF, Säemann M, Buchta C, et al. Influence of clinical markers on the haemolysis marker haptoglobin. Eur J Clin Invest. 2006;36:202–9. [CrossRef] [PubMed] [Google Scholar]
  12. Rother R, Bell L, Hillmen MB, Gladwin M. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. JAMA. 2005;293:1653–62. [CrossRef] [PubMed] [Google Scholar]
  13. Nemoto S, Aoki M, Dehua C, Imai Y. Free hemoglobin impairs cardiac function in neonatal rabbit hearts. Ann Thorac Cardiovasc Surg. 2000;69:1484–9. [Google Scholar]
  14. Jeffers A, Gladwin MT, Kim-Shapiro DB. Computation of plasma hemoglobin nitric oxide scavenging in haemolytic anaemias. Free Radic Biol Med. 2006;41:1557–65. [CrossRef] [Google Scholar]
  15. Mumby S, Chaturvedi R, Brierley J, et al. Risk of iron overload is decreased in beating heart coronary artery surgery compared to conventional bypass. Biochim Biophys Acta. 2001;1537:204–10. [CrossRef] [PubMed] [Google Scholar]
  16. Mumby S, Koh T, Pepper J, Gutteridge J. Iron overload in paediatrics undergoing cardiopulmonary bypass. Biochim Biophys Acta. 2000;1500:342–8. [CrossRef] [PubMed] [Google Scholar]
  17. Davis C, Kausz A, Zager R, Kharasch E, Cochran R. Acute renal failure after CPB is related to decreased serum ferritin levels. J Am Soc Nephrol. 1999;10:2396–402. [CrossRef] [PubMed] [Google Scholar]
  18. Yong AN, Xiao Y-B, Zhong Q-Z. Hyperbilirubinemia after extracorporeal circulation surgery: A recent and prospective study. World J Gastroenterol. 2006;12:6722–6. [CrossRef] [PubMed] [Google Scholar]
  19. Lee SS, Antaki J, Kameneva M, et al. Strain hardening of red blood cells by accumulated cyclic supraphysiological stress. Artif Organs. 2007;31:1. [CrossRef] [PubMed] [Google Scholar]
  20. Watanabe N, Sakota D, Ochuchi K, Takatani S. Deformability of red blood cells and its relation to blood trauma in rotary blood pumps. Artif Organs. 2007;31:352–8. [CrossRef] [PubMed] [Google Scholar]
  21. Pierangeli A, Masieri V, Bruzzi F, et al. Haemolysis during cardiopulmonary bypass: How to reduce the free hemoglobin by managing the suctioned blood separately. Perfusion. 2001;16:519. [CrossRef] [PubMed] [Google Scholar]
  22. Svenmarker S, Jansson E, Stenlund H, Engström K. Red blood cell trauma during cardiopulmonary bypass: Narrow pore filterability versus free hemoglobin. Perfusion. 2000;15:33. [CrossRef] [PubMed] [Google Scholar]
  23. Tanaka K, Kanamori Y, Sato T, et al. Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO J. 1991;37:M482–3. [Google Scholar]
  24. Shimizu T, Kudo T, Yamaguchi H, Ishimaru S, Furukawa K. Haptoglobin administration with autotransfusion of blood ultrafiltered after cardiopulmonary bypass. Kyobu Geka. 1991;44:206–10. [PubMed] [Google Scholar]
  25. Watanabee N, Arakawa Y, Atsushi S, et al. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing flow generator. Physiol Meas. 2007;28:531–45. [CrossRef] [PubMed] [Google Scholar]
  26. Ekestrom S, Lal Koul B, Sonnenfeld T. Decreased red cell deformability following open-heart surgery. Scand J Thorac Cardiovasc Surg. 1983;17:41–4. [CrossRef] [PubMed] [Google Scholar]
  27. Belboul A, Krotkiewski M, Al-Khaja N, et al. Oxygen free radical generation during cardiac surgery induces lipid peroxidation and decreases blood cell rheology. Vasc Surg. 1993;214:288–92. [CrossRef] [Google Scholar]
  28. Valeri R, McGregor H, Ragno G, Healey N, Fonger J, Khuri S. Effects of centrifugal and roller pumps on survival of autologous red cells in cardiopulmonary bypass surgery. Perfusion. 2006;21:291. [CrossRef] [PubMed] [Google Scholar]
  29. Mulholland JW, Massay W, Shelton JC. Investigation and quantification of the blood trauma caused by the combined dynamic forces experienced during cardiopulmonary bypass. Perfusion. 2000;15:485. [CrossRef] [PubMed] [Google Scholar]
  30. Wright G. Haemolysis during cardiopulmonary bypass: Update. Perfusion. 2001;16:345. [CrossRef] [PubMed] [Google Scholar]
  31. Leverett L, Hellums D, Alfrey C, Lynch E. Red blood cell damage by shear stress. Biophys J. 1972;12:257–73. [CrossRef] [Google Scholar]
  32. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood. 1996;88:1525–41. [CrossRef] [PubMed] [Google Scholar]
  33. De Somer F. Strategies for Optimisation of Paediatric Cardiopulmonary Bypass. Maastricht: Shaker Publishing; 2002. [Google Scholar]
  34. Kim WG, Yoon CJRoller pump induced tubing wear of polyvinylchloride and silicone rubber tubing: Phase contrast and scanning electron microscopic studies. Artif Organs. 1998;22:892–7. [CrossRef] [PubMed] [Google Scholar]
  35. Harmand MF, Briquet F. In vitro comparative evaluation under static conditions of the hemocompatibility of four types of tubing for cardiopulmonary bypass. Biomaterials. 1999;20:1561–71. [CrossRef] [PubMed] [Google Scholar]
  36. Handa N, Yasuda Y, Funakubo A, Fukui Y. The relation between physical forces and hemolysis. Jpn J Artif Organs. 1998;27:118–23. [Google Scholar]
  37. Yasuda T, Funakubo A, Miyawaki F, Kawamura T, Higami T, Fukui Y. Influence of static pressure and shear rate on hemolysis of red blood cells. Artif Organs. 2002;26:27–31. [CrossRef] [PubMed] [Google Scholar]
  38. Blackshear PL, Dorman FD, Steinbach JH. Some mechanical effects that influence hemolysis. Trans Am Soc Artif Intern Organs. 1965;11:112–7. [CrossRef] [Google Scholar]
  39. Hessel EA. Cardiopulmonary bypass circuitry and cannulation techniques. In: Gravlee GP, Davis RF, Utley JR, eds. Cardiopulmonary Bypass Principles and Practice. Baltimore: Williams & Wilkins; 1993;55–92. [Google Scholar]
  40. Ringgaard S, Madsen T, Pedersen E, Stodkilde-Jorgensen H, Nygaard H, Hasenkam M. Quantitative evaluation of flow patterns in perfusion cannulae by a new magnetic resonance imaging method. Perfusion. 1997;12:411–6. [CrossRef] [PubMed] [Google Scholar]
  41. Kameneva M, Burgreen G, Kono K, Repko B, Antaki J, Umezu M. Effects of turbulent stresses upon mechanical hemolysis: Experimental and computational analysis. ASAIO J. 2004;50:418–23. [CrossRef] [PubMed] [Google Scholar]
  42. Andersen M, Ringgaard S, Hasenkam J, Nygaard H. Quantitative haemodynamic evaluation of aortic canula. Perfusion. 2004;19:323–30. [CrossRef] [PubMed] [Google Scholar]
  43. Schönberger J, Everts P, Hoffmann J. Systemic blood activation with open and closed venous reservoirs. Ann Thorac Surg. 1995;59:1549–55. [CrossRef] [Google Scholar]
  44. Colangelo N, Toracca L, Lapenna E, Moriggia S, Crescenzi G, Alfieri O. Vacuum-assisted venous drainage in extrathoracic cardiopulmonary bypass management during minimally invasive cardiac surgery. Perfusion. 2006;21:361–5. [CrossRef] [PubMed] [Google Scholar]
  45. Hansbro SD, Sharpe A, Catchpole R, et al. Hemolysis during cardiopulmonary bypass; an in vivo comparison of standard roller pumps, nonocclusive pumps and centrifugal pumps. Perfusion. 1999;14:3. [CrossRef] [PubMed] [Google Scholar]
  46. Tamari Y, Lee-Sensiba K, Leonard E, Tortolani A. A dynamic method for setting roller pumps nonocclusively reduces hemolysis and predicts retrograde flow. ASAIO J. 1997;43:39–52. [CrossRef] [PubMed] [Google Scholar]
  47. Rawn DJ, Harris HK, Riley JB, Yoda DN, Blackwell MM. An under-occluded roller pump is less hemolytic than a centrifugal pump. J Extra Corpor Technol. 1997;29:15–8. [Google Scholar]
  48. Lawson DS, Ing R, Cheifetz IM, et al. Hemolytic characteristics of three commercially available centrifugal blood pumps. Pediatr Crit Care Med. 2005;6:573–7. [CrossRef] [PubMed] [Google Scholar]
  49. Taenaka AK, Masuzawa T, Tatsumi E, et al. Hemolysis and heat generation in six different types of centrifugal blood pumps. Artif Organs. 1995;19:928–32. [CrossRef] [PubMed] [Google Scholar]
  50. McDonald J, Green TP, Steinhorn R. The role of the centrifugal pump in hemolysis during neonatal extracorporeal support. ASAIO J. 1997;43:35–8. [CrossRef] [PubMed] [Google Scholar]
  51. Morgan IS, Codispoti M, Sanger K, Mankad PS. Superiority of centrifugal pump over roller pump in pediatric cardiac surgery: Prospective randomised trial. Eur J Cardio Thorac Surg. 1998;13:526–32. [CrossRef] [Google Scholar]
  52. Kawahito S, Maeda T, Yoshikawa M, et al. Blood trauma induced by clinically accepted oxygenators. ASAIO J. 2001;47:492–5. [CrossRef] [PubMed] [Google Scholar]
  53. Kawahito S, Maeda T, Motomura T, et al. Hemolytic characteristics of oxygenators during clinical extracorporeal membrane oxygenation. ASAIO J. 2002;48:636–9. [CrossRef] [PubMed] [Google Scholar]
  54. De Somer F, Foubert L, Vanackere M, Dujardin D, Delanghe J, Van Nooten G. Impact of oxygenator design on hemolysis, shear stress and white blood cells and platelet count. J Cardiothorac Vasc Anesth. 1996;10:884–9. [CrossRef] [Google Scholar]
  55. Moen O, Fosse E, Dregelid E, et al. Centrifugal pump and heparin coating improves cardiopulmonary bypass biocompatibility. Ann Thorac Surg. 1996;62:1134–40. [CrossRef] [Google Scholar]
  56. Belboul A, Akbar O, Löfgren C, Jungbeck M, Storm C, Roberts A. Improved blood cellular biocompatibility with heparin coated circuits during cardiopulmonary bypass. J Cardiovasc Surg (Torino). 2000;41:357–62. [PubMed] [Google Scholar]
  57. Belboul A, Al-Khaja J, Gudmundsson M, et al. The influence of heparin-coated and uncoated extracorporeal circulation on blood rheology during cardiac surgery. J Extra Corpor Technol. 1993;25:40–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  58. Cirri S, Negri L, Babbini M, et al. Hemolysis due to active venous drainage during cardiopulmonary bypass: Comparison of two different techniques. Perfusion. 2001;16:313. [CrossRef] [PubMed] [Google Scholar]
  59. Mueller X, Tevaearai H, Horisberger J, Augstburger M, Buriki M, Von Segesser L.. Vacuum assisted venous drainage does not increase trauma to blood cells. ASAIO J. 2001;47:651–4. [CrossRef] [PubMed] [Google Scholar]
  60. Shin H, Yozu R, Maehare T, et al. Vacuum assisted cardiopulmonary bypass in minimally invasive cardiac surgery: Its feasibility and effects on hemolysis. Artif Organs. 2000;24:450–3. [CrossRef] [PubMed] [Google Scholar]
  61. Bevilacqua S, Matteucci S, Ferrarini M, et al. Biochemical evaluation of vacuum-assisted venous drainage: A randomized, prospective study. Perfusion. 2002;17:57–61. [CrossRef] [PubMed] [Google Scholar]
  62. Fiorucci A, Gerometta PS, DeVecchi M, Guzman C, Constantino ML, Arena V. In vitro assessment of the vacuum-assisted drainage system: risk and benefits. Perfusion. 2004;19:113–7. [CrossRef] [PubMed] [Google Scholar]
  63. Jegger D, Horrisberger J, Jachertz M, et al. A novel device for reducing hemolysis provoked by cardiotomy suction during open heart cardiopulmonary bypass surgery: A randomized prospective study. Artif Organs. 2007;31:23–30. [CrossRef] [PubMed] [Google Scholar]
  64. Svenarud P, Persson M, Van der Linder J. Effect of CO2 insufflation on the number and behaviour of air microemboli in open-heart surgery: A randomized clinical trial. Circulation. 2004;109:1127–32. [CrossRef] [PubMed] [Google Scholar]
  65. Skrabal CA, Khosravi A, Choi YH, et al. Pericardial suction blood separation attenuates inflammatory response and hemolysis after cardiopulmonary bypass. Scand Cardiovasc J. 2006;40:219–23. [CrossRef] [PubMed] [Google Scholar]
  66. Gregoretti S. Suction-induced hemolysis at various vacuum pressures: Implications for intra-operative blood salvage. Transfusion. 1996;36:57–60. [CrossRef] [PubMed] [Google Scholar]
  67. Murakami F, Usul A, Hiroura M, Kawamura M, Koyama T, Murase M. Clinical study of totally pumpless cardiopulmonary bypass system. Artif Organs. 1997;21:803–7. [CrossRef] [PubMed] [Google Scholar]
  68. Barthelemey R, Vives M, Couzy M, et al. Dispositif de controle automatique des aspirations chirurgicales en chirurgie cardiaque. Med Biol Eng Comput. 1978;16:165–8. [CrossRef] [PubMed] [Google Scholar]
  69. de Jong JF, ten Duis JH, Smit Sibinga CT, Wildevuur CHR. Hematologic aspects of cardiotomy suction in cardiac operations. J Thorac Cardiovasc Surg. 1980;79:227–36. [CrossRef] [Google Scholar]
  70. Tevaerai HT, Mueller XM, Horisberger G, et al. In situ control of cardiotomy suction reduces blood trauma. ASAIO J. 1998;44:M380–7. [CrossRef] [PubMed] [Google Scholar]
  71. Wright G, Zhang SF. A low trauma cardiotomy suction system for use in open-heart surgery. Proceedings of the 20th Annual International Conference of IEEE/EMBS, Hong Kong, 1998;20:452–3. [Google Scholar]
  72. Clague CT, Blackshear PLJr. An atraumatic aspirator for use in autologous transfusion and cardiac bypass. ASAIO J. 1995;41:M551–6. [CrossRef] [PubMed] [Google Scholar]
  73. Gentle Vent Pump Header. [Google Scholar]
  74. Chambers SD, Lamberteaux KR, Merz SI, Montoy JP, Bartlett RH. Effects of static pressure on red blood cells on removal of the air interface. ASAIO J. 1996;42:947–50. [CrossRef] [PubMed] [Google Scholar]
  75. Tevaearai HT, Mueller XM, Horisberger J. In situ control of cardiotomy suction rduces blood trauma. ASAIO J. 1998;44:M380–7. [CrossRef] [PubMed] [Google Scholar]
  76. Boonstra PW, van Imhoff GW, Eysman L. Reduced platelet activation and improved hemostasis after controlled cardiotomy suction during clinical membrane oxygenator perfusions. J Thorac Cardiovasc Surg. 1985;89:900–6. [CrossRef] [Google Scholar]
  77. Chambers S, Ceccio S, Annich G, Bartlett R. Extreme negative pressure does not cause erythrocyte damage in flowing blood. ASAIO J. 1999;45:431–5. [CrossRef] [PubMed] [Google Scholar]
  78. Waters J, Williams B, Yazer M, Kameneva M. Modification of suction-induced hemolysis during cell salvage. Anesth Analg. 2007;104:684–7. [CrossRef] [PubMed] [Google Scholar]
  79. Lee SS, Kim N, Lee S, et al. Shear-induced pre-conditioning effect of red blood cell damage. Summer Bioengineering Conference, June 25–29, Florida, 6 25–29, 2003. [Google Scholar]
  80. Kameneva M, Undar A, Antaki J, Watach M, Calhoon J, Borovetz H. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: Factors related to cardiopulmonary bypass. ASAIO J. 1999;45:307–10. [CrossRef] [PubMed] [Google Scholar]
  81. Kameneva M, Antaki J, Yeleswarapu K, Watach M, Griffith B, Borovetz H. Plasma protective effect on red blood cells exposed to mechanical stress. ASAIO J. 1997;43:M571–5. [Google Scholar]
  82. Golbasi I, Akbas H, Ozdem S, Ukan S, Ozdem SS, Kabukcu M. The effect of pentoxifylline on haemolysis during cardiopulmonary bypass in open heart surgery. Acta Cardiol. 2006;61:7–11. [CrossRef] [PubMed] [Google Scholar]
  83. Kameneva M, Repko B, Krasik E, Perricelli B, Borovetz H. Polyethylene glycol additive reduce hemolysis in red blood cell suspension exposed to mechanical stress. ASAIO J. 2003;49:537–42. [CrossRef] [PubMed] [Google Scholar]
  84. Ochoa J, Vilchez M, Palacios M, Garcia J, Reiter R, Munos-Hoyos A. Melatonin protects against lipid peroxidation and membrane rigidity in erythrocytes from patients undergoing cardiopulmonary bypass surgery. J Pineal Res. 2003;35:104–8. [CrossRef] [Google Scholar]
  85. Coccia R, Spadaccio C, Foppoli C, et al. The effect of Simvastatin on erythrocyte membrane fluidity during oxidative stress induced by cardiopulmonary bypass: A randomized controlled study. Clin Ther. 2007;29:1706–17. [CrossRef] [Google Scholar]
  86. Baskurt OK, Uyuklu M, Meiselman HJ. Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage. Biorheology. 2004;41:79–89. [PubMed] [Google Scholar]
  87. Lau K, Shah H, Kelleher A, Moat N. Coronary artery surgery: Cardiotomy suction or cell salvage? J Cardiothorac Surg. 2007;2:46. [CrossRef] [Google Scholar]
  88. Betrus C, Remenapp R, Charpie J, et al. Enhanced hemolysis in pediatric patients requiring extracorporeal membrane oxygenation and continuous renal replacement therapy. Ann Thorac Cardiovasc Surg. 2007;13:378–83. [Google Scholar]
  89. Nitescu N, Bengtsson A, Bengtsson JP. Blood salvage with a continuous autotransfusion system compared with a haemofiltration system. Perfusion. 2002;17:357–62. [CrossRef] [PubMed] [Google Scholar]
  90. Glogowski K, Stammers A, Niimi K, Tremain KD, Muhle M, Trowbridge C. The effect of priming techniques of ultrafiltrators on blood rheology: An in vitro evaluation. Perfusion. 2001;16:221–8. [CrossRef] [PubMed] [Google Scholar]
  91. Hashimoto K, Nomura K, Nakano M, Sasaki T, Kurosawa H. Pharmacological intervention for renal protection during CPB. Heart Vessels. 1995;8:203–10. [Google Scholar]
  92. Kaya K, Og?uz M, Akar AR, et al. The effect of sodium nitroprusside infusion on renal function during reperfusion period in patients undergoing coronary artery bypass grafting: A prospective randomized clinical trial. Eur J Cardiothorac Surg. 2007;31:290–7. [CrossRef] [Google Scholar]
  93. Cheung A, Cruz-Schiavone G, Meng Q, et al. Cardiopulmonary bypass, hemolysis and nitroprusside-induced cyanide production. Anesth Analg. 2007;105:29–33. [CrossRef] [PubMed] [Google Scholar]
  94. He X, Azarov I, Jeffers A, et al. The potential of Angeli’s Salt to decrease nitric oxide scavenging by plasma hemoglobin. Free Radic Biol Med. 2008;7:1420–32. [CrossRef] [Google Scholar]
  95. Haase M, Haase-Fielitz A, Bagshaw SM, Ronco C, Bellomo R. Cardiopulmonary bypass-associated acute kidney injury: A pigment nephropathy? Contrib Nephrol. 2007;156:340–53. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.