Free Access
Issue |
J Extra Corpor Technol
Volume 41, Number 2, June 2009
|
|
---|---|---|
Page(s) | 79 - 86 | |
DOI | https://doi.org/10.1051/ject/200941079 | |
Published online | 15 June 2009 |
- Butler J, Rocker GM, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1993;55:552–9. [CrossRef] [Google Scholar]
- Landis C. Why the inflammatory response is important to the cardiac surgical patient. J Extra Corpor Technol. 2007;39:281–4. [Google Scholar]
- Landis C. Pharmacologic strategies for combating the inflammatory response. J Extra Corpor Technol. 2007;39:291–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Greilich PE, Brouse CF, Rinder CS, et al. Effects of epsilon-aminocaproic acid and aprotinin on leukocyte-platelet adhesion in patients undergoing cardiac surgery. Anesthesiology. 2004;100:225–33. [CrossRef] [PubMed] [Google Scholar]
- Sedrakyan A, Treasure T, Elefteriades JA. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: A systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg. 2004;128:442–8. [CrossRef] [Google Scholar]
- Henry DA, Moxey AJ, Carless PA, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Data Syst Rev 2001;1:CD001886. [Google Scholar]
- Fergusson DA, Hebert PC, Mazer CD, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358:2319–31. [CrossRef] [PubMed] [Google Scholar]
- Mangano DT, Tudor IC, Dietzel C. Multicenter study of perioperative ischemia research G, ischemia R, education F. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65. [CrossRef] [PubMed] [Google Scholar]
- Westaby S. Aprotinin: twenty-five years of claim and counterclaim. J Thorac Cardiovasc Surg. 2008;135:487–91. [CrossRef] [Google Scholar]
- Asimakopoulos G, Lidington EA, Mason J, Haskard DO, Taylor KM, Landis RC. Effect of aprotinin on endothelial cell activation. J Thorac Cardiovasc Surg. 2001;122:123–8. [CrossRef] [Google Scholar]
- Asimakopoulos G, Taylor KM, Haskard DO, Landis RC. Inhibition of neutrophil L-selectin shedding: A potential anti-inflammatory effect of aprotinin. Perfusion. 2000;15:495–9. [CrossRef] [PubMed] [Google Scholar]
- Day JR, Haskard DO, Taylor KM, Landis RC. Effect of aprotinin and recombinant variants on platelet protease-activated receptor 1 activation. Ann Thorac Surg. 2006;81:619–24. [CrossRef] [Google Scholar]
- Day JR, Landis RC, Taylor KM. Aprotinin and the protease-activated receptor 1 thrombin receptor: Antithrombosis, inflam mation, and stroke reduction. Semin Cardiothorac Vasc Anesth. 2006;10:132–42. [CrossRef] [PubMed] [Google Scholar]
- Day JR, Taylor KM, Lidington EA, et al. Aprotinin inhibits proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. J Thorac Cardiovasc Surg. 2006;131:21–7. [CrossRef] [Google Scholar]
- Pruefer D, Makowski J, Dahm M, et al. Aprotinin inhibits leukocyteendothelial cell interactions after hemorrhage and reperfusion. Ann Thorac Surg. 2003;75:210–5. [CrossRef] [Google Scholar]
- Wachtfogel YT, Kucich U, Hack CE, et al. Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. J Thorac Cardiovasc Surg. 1993;106:1–9. [CrossRef] [Google Scholar]
- Greilich PE, Brouse CF, Whitten CW, Chi L, Dimaio JM, Jessen ME. Antifibrinolytic therapy during cardiopulmonary bypass reduces proinflammatory cytokine levels: A randomized, double-blind, placebo-controlled study of epsilon-aminocaproic acid and aprotinin. J Thorac Cardiovasc Surg. 2003;126:1498–503. [CrossRef] [Google Scholar]
- Harig F, Feyrer R, Mahmoud FO, Blum U, von der Emde J. Reducing the post-pump syndrome by using heparin-coated circuits, steroids, or aprotinin. Thorac Cardiovasc Surg. 1999;47:111–8. [CrossRef] [PubMed] [Google Scholar]
- Schmartz D, Tabardel Y, Preiser JC, et al. Does aprotinin influence the inflammatory response to cardiopulmonary bypass in patients? J Thorac Cardiovasc Surg. 2003;125:184–90. [CrossRef] [Google Scholar]
- Isbir CS, Dogan R, Demircin M, Yaylim I, Pasaoglu I. Aprotinin reduces the IL-8 after coronary artery bypass grafting. Cardiovasc Surg. 2001;9:403–6. [CrossRef] [Google Scholar]
- Koster A, Huebler S, Merkle F, et al. Heparin-level-based anticoagulation management during cardiopulmonary bypass: A pilot investigation on the effects of a half-dose aprotinin protocol on postoperative blood loss and hemostatic activation and inflammatory response. Anesth Analg. 2004;98:285–90. [CrossRef] [PubMed] [Google Scholar]
- Lei Y, Haider H, Chusnsheng W, et al. Dose-dependent effect of aprotinin on aggravated pro-inflammatory cytokines in patients with pulmonary hypertension following cardiopulmonary bypass. Cardiovasc Drugs Ther. 2003;17:343–8. [CrossRef] [Google Scholar]
- Wei M, Kuukasjarv P, Laurikka J, et al. Cardioprotective effect of pump prime aprotinin in coronary artery bypass grafting. Cardiovasc Drugs Ther. 2002;16:37–42. [CrossRef] [Google Scholar]
- Defraigne JO, Pincemail J, Larbuisson R, Blaffart F, Limet R. Cytokine release and neutrophil activation are not prevented by heparin-coated circuits and aprotinin administration. Ann Thorac Surg. 2000;69:1084–91. [CrossRef] [Google Scholar]
- Hill GE, Alonso A, Spurzem JR, Stammers AH, Robbins RA. Aprotinin and methylprednisolone equally blunt cardiopulmonary bypass-induced inflammation in humans. J Thorac Cardiovasc Surg. 1995;110:1658–62. [CrossRef] [Google Scholar]
- Turkoz A, Cigli A, But K, et al. The effects of aprotinin and steroids on generation of cytokines during coronary artery surgery. J Cardiothorac Vasc Anesth. 2001;15:603–10. [CrossRef] [Google Scholar]
- Diego RP, Mihalakakos PJ, Hexum TD, Hill GE. Methylprednisolone and full-dose aprotinin reduce reperfusion injury after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1997;11:29–31. [CrossRef] [Google Scholar]
- Goudeau JJ, Clermont G, Guillery O, et al. In high-risk patients, combination of antiinflammatory procedures during cardiopulmonary bypass can reduce incidences of inflammation and oxidative stress. J Cardiovasc Pharmacol. 2007;49:39–45. [CrossRef] [PubMed] [Google Scholar]
- Kaminishi Y, Hiramatsu Y, Watanabe Y, Yoshimura Y, Sakakibara Y. Effects of nafamostat mesilate and minimal-dose aprotinin on blood-foreign surface interactions in cardiopulmonary bypass. Ann Thorac Surg. 2004;77:644–50. [CrossRef] [Google Scholar]
- Tassani P, Augustin N, Barankay A, Braun SL, Zaccaria F, Richter JA. High-dose aprotinin modulates the balance between proinflammatory and anti-inflammatory responses during coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2000;14:682–6. [CrossRef] [Google Scholar]
- Wei M, Kuukasjarvi P, Laurikka J, et al. Pump prime aprotinin fails to limit proinflammatory cytokine release after coronary artery bypass surgery. Scand Cardiovasc J. 2001;35:50–4. [CrossRef] [PubMed] [Google Scholar]
- Greilich PE, Okada K, Latham P, Kumar RR, Jessen ME. Aprotinin but not epsilon-aminocaproic acid decreases interleukin-10 after cardiac surgery with extracorporeal circulation: Randomized, double-blind, placebo-controlled study in patients receiving aprotinin and epsilon-aminocaproic acid. Circulation. 2001;104(Suppl 1):I265–9. [Google Scholar]
- Hill GE, Diego RP, Stammers AH, Huffman SM, Pohorecki R. Aprotinin enhances the endogenous release of interleukin-10 after cardiac operations. Ann Thorac Surg. 1998;65:66–9. [CrossRef] [Google Scholar]
- Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: The QUOROM statement. Quality of Reporting of Meta-analyses. Lancet. 1999;354:1896–900. [CrossRef] [PubMed] [Google Scholar]
- Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Controlled Clin Trials. 1996;17:1–12. [CrossRef] [Google Scholar]
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. [CrossRef] [PubMed] [Google Scholar]
- Baufreton C, Jansen PG, Le Besnerais P, et al. Heparin coating with aprotinin reduces blood activation during coronary artery operations. Ann Thorac Surg. 1997;63:50–6. [CrossRef] [Google Scholar]
- Cicekcioglu F, Cagli K, Emir M, et al. Effects of minimal dose aprotinin on blood loss and fibrinolytic system-complement acti vation in coronary artery bypass grafting surgery. J Card Surg. 2006;21:336–41. [CrossRef] [PubMed] [Google Scholar]
- Gott JP, Cooper WA, Schmidt FEJr, et al. Modifying risk for extracorporeal circulation: Trial of four antiinflammatory strategies. Ann Thorac Surg. 1998;66:747–53. [CrossRef] [Google Scholar]
- Casati V, Della Valle P, Benussi S, et al. Effects of tranexamic acid on postoperative bleeding and related hematochemical variables in coronary surgery: Comparison between on-pump and off-pump techniques. J Thorac Cardiovasc Surg. 2004;128:83–91. [CrossRef] [Google Scholar]
- Fritz H, Wunderer G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung. 1983;33:479–94. [PubMed] [Google Scholar]
- Royston D, Cardigan R, Gippner-Steppert C, Jochum M. Is perioperative plasma aprotinin concentration more predictable and constant after a weight-related dose regimen? Anesth Analg. 2001;92:830–6. [CrossRef] [PubMed] [Google Scholar]
- Landis RC, Arrowsmith JE, Baker RA, et al. Consensus statement: Defining the minimal criteria for reporting the systemic inflammatory response to cardiopulmonary bypass. Heart Surg Forum. 2008;11:290–6. [Google Scholar]
- Royston D, Kovesi T, Marczin N. The unwanted response to cardiac surgery: Time for a reappraisal? J Thorac Cardiovasc Surg. 2003;125:32–5. [CrossRef] [Google Scholar]
- Asimakopoulos G, Kohn A, Stefanou DC, Haskard DO, Landis RC, Taylor KM. Leukocyte integrin expression in patients undergoing cardiopulmonary bypass. Ann Thorac Surg. 2000;69:1192–7. [CrossRef] [Google Scholar]
- Evans BJ, Haskard DO, Finch JR, Hambleton IR, Landis RC, Taylor KM. The inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in vivo. J Thorac Cardiovasc Surg. 2008;135:999–1006. [CrossRef] [Google Scholar]
- Tahamont MV, Barie PS, Blumenstock FA, Hussain MH, Malik AB. Increased lung vascular permeability after pancreatitis and trypsin infusion. Am J Pathol. 1982;109:15–26. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.