Free Access
Issue
J Extra Corpor Technol
Volume 42, Number 4, December 2010
Page(s) 293 - 300
DOI https://doi.org/10.1051/ject/201042293
Published online 15 December 2010
  1. Califf RM, Phillips HRIII, Hindman MC, et al. Prognostic value of a coronary artery jeopardy score. J Am Coll Cardiol. 1985;5:1055–63. [CrossRef] [Google Scholar]
  2. Clark RE, Edwards FH, Schwartz M. Profile of preoperative characteristics of patients having CABG over the past decade. Ann Thorac Surg. 1994;58:1863–5. [CrossRef] [Google Scholar]
  3. Doliszny KM, Luepker RV, Burke GL, Pryor DB, Blackburn H. Estimated contribution of coronary artery bypass graft surgery to the decline in coronary heart disease mortality: The Minnesota Heart Survey. J Am Coll Cardiol. 1994;24:95–103. [CrossRef] [Google Scholar]
  4. Grover FL, Johnson RR, Marshall G, Hammermeister KE. Factors predictive of operative mortality among coronary artery bypass subsets. Ann Thorac Surg. 1993;56:1296–306, discussion 1306-7. [CrossRef] [Google Scholar]
  5. Hannan EL, Kilburn HJr, O’Donnell JF, Lukacik G, Shields EP. Adult open heart surgery in New York State. An analysis of risk factors and hospital mortality rates. JAMA. 1990;264:2768–74. [CrossRef] [PubMed] [Google Scholar]
  6. Higgins TL, Estafanous FG, Loop FD, Beck GJ, Blum JM, Paranandi L. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients. A clinical severity score. JAMA. 1992;267:2344–8. [CrossRef] [PubMed] [Google Scholar]
  7. O’Connor GT, Plume SK, Olmstead EM, et al. Multivariate prediction of in-hospital mortality associated with coronary artery bypass graft surgery. Northern New England Cardiovascular Disease Study Group. Circulation. 1992;85:2110–8. [Google Scholar]
  8. Parsonnet V, Dean D, Bernstein AD. A method of uniform stratification of risk for evaluating the results of surgery in acquired adult heart disease. Circulation. 1989;79:I3–12. [PubMed] [Google Scholar]
  9. Jones RH, Hannan EL, Hammermeister KE, et al. Identification of preoperative variables needed for risk adjustment of short-term mortality after coronary artery bypass graft surgery. The Working Group Panel on the Cooperative CABG Database Project. J Am Coll Cardiol. 1996;28:1478–87. [Google Scholar]
  10. Peterson ED, DeLong ER, Muhlbaier LH, et al. Challenges in comparing risk-adjusted bypass surgery mortality results: Results from the Cooperative Cardiovascular Project. J Am Coll Cardiol. 2000;36:2174–84. [CrossRef] [Google Scholar]
  11. Braunwald E. Application of current guidelines to the management of unstable angina and non-ST-elevation myocardial infarction. Circ J Am Heart Assoc. 2003;108:28–37. [Google Scholar]
  12. Dacey LJ, DeSimone J, Braxton JH, et al. Preoperative white blood cell count and mortality and morbidity after coronary artery bypass grafting. Ann Thorac Surg. 2003;76:760–4. [CrossRef] [Google Scholar]
  13. Lyon WJ, Baker RA, Andrew MJ, Tirimacco R, White GH, Knight JL. Relationship between elevated preoperative troponin T and adverse outcomes following cardiac surgery. ANZ J Surg. 2003;73:40–4. [CrossRef] [Google Scholar]
  14. Carrier M, Pelletier LC, Martineau R, Pellerin M, Solymoss BC. In elective coronary artery bypass grafting, preoperative troponin T level predicts the risk of myocardial infarction. J Thorac Cardiovasc Surg. 1998;115:1328–34. [CrossRef] [Google Scholar]
  15. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9. [CrossRef] [PubMed] [Google Scholar]
  16. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circ J Am Heart Assoc. 1998;98:731–3. [Google Scholar]
  17. Biancari F, Lahtinen J, Lepojarvi S, et al. Preoperative C-reactive protein and outcome after coronary artery bypass surgery. Ann Thorac Surg. 2003;76:2007–12. [CrossRef] [Google Scholar]
  18. Medhi M, Marshall MCJr, Burke HB, et al. HbA1c predicts length of stay in patients admitted for coronary artery bypass surgery. Heart Dis. 2001;3:77–9. [CrossRef] [PubMed] [Google Scholar]
  19. Zindrou D, Taylor KM, Bagger JP. Admission plasma glucose: An independent risk factor in nondiabetic women after coronary artery bypass grafting. Diabetes Care. 2001;24:1634–9. [CrossRef] [PubMed] [Google Scholar]
  20. Eagle KA, Guyton RA, Davidoff R, et al. ACC/AHA guidelines for coronary artery bypass graft surgery: Executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1991 guidelines for coronary artery bypass graft surgery). Circ J Am Heart Assoc. 1999;100:1464–80. [Google Scholar]
  21. Eagle KA, Guyton RA, Davidoff R, et al. ACC/AHA guidelines for coronary artery bypass graft surgery: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1991 Guidelines for Coronary Artery Bypass Graft Surgery). American College of Cardiology/American Heart Association. J Am Coll Cardiol. 1999;34:1262–347. [CrossRef] [Google Scholar]
  22. O’Connor GT, Plume SK, Olmstead EM, et al. A regional prospective study of in-hospital mortality associated with coronary artery bypass grafting. The Northern New England Cardiovascular Disease Study Group. JAMA. 1991;266:803–9. [CrossRef] [PubMed] [Google Scholar]
  23. Surgenor SD, O’Connor GT, Lahey SJ, et al. Predicting the risk of death from heart failure after coronary artery bypass graft surgery. Anesth Analg. 2001;92:596–601. [Google Scholar]
  24. Peterson ED, DeLong ER, Muhlbaier LH, et al. Challenges in comparing risk-adjusted bypass surgery mortality results: results from the Cooperative Cardiovascular Project. J Am Coll Cardiol. 2000;36:2174–84. [CrossRef] [Google Scholar]
  25. The Principal Investigators of CASS and Their Associates: The National Heart, Lung, and Blood Institute Coronary Artery Surgery Study (CASS). Circulation 1981;63(Suppl I):I-1–I-81. [CrossRef] [PubMed] [Google Scholar]
  26. Pierpont GL, Kruse M, Ewald S, Weir EK. Practical problems in assessing risk for coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1985;89:673–82. [CrossRef] [Google Scholar]
  27. Hennekens CH, Buring JE. Epidemiology in Medicine. Boston, MA: Little Brown & Co; 1988. [Google Scholar]
  28. Armitage P, Berry G. Statistical Methods in Medical Research. London: Blackwell Scientific Publications; 1987. [Google Scholar]
  29. Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. Belmont, CA: Wadsworth Inc; 1982. [Google Scholar]
  30. Lemeshow S, Hosmer DW. The use of goodness-of-fit statistics in the development of logistic regression models. Am J Epidemiol. 1982;115:92–106. [CrossRef] [PubMed] [Google Scholar]
  31. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36. [Google Scholar]
  32. Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. 1986;1:54–77. [Google Scholar]
  33. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45. [Google Scholar]
  34. Brown JR, Cochran RP, Leavitt BJ, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery. Circulation. 2007;116(Suppl):I139–43. [Google Scholar]
  35. Melander O, Newton-Cheh C, Almgren P, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302:49–57. [CrossRef] [PubMed] [Google Scholar]
  36. Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–16. [CrossRef] [PubMed] [Google Scholar]
  37. Hamm CW, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med. 1992;327:146–50. [CrossRef] [PubMed] [Google Scholar]
  38. Wu AH, Abbas SA, Green S, et al. Prognostic value of cardiac troponin T in unstable angina pectoris. Am J Cardiol. 1995;76:970–2. [CrossRef] [Google Scholar]
  39. Ohman EM, Armstrong PW, Christenson RH, et al. Cardiac troponin T levels for risk stratification in acute myocardial ischemia. GUSTO IIA Investigators. N Engl J Med. 1996;335:1333–41. [CrossRef] [PubMed] [Google Scholar]
  40. Venge P, Lagerqvist B, Diderholm E, Lindahl B, Wallentin L. Clinical performance of three cardiac troponin assays in patients with unstable coronary artery disease (a FRISC II substudy). Am J Cardiol. 2002;89:1035–41. [CrossRef] [Google Scholar]
  41. Bergler-Klein JK, Klaar U, Heger M, et al. Prognostic importance of natriuretic peptides in aortic stenosis. Circ J Am Heart Assoc. 2003;108:2343. [Google Scholar]
  42. Berendes E, Schmidt C, Van Aken H, et al. A-type and B-type natriuretic peptides in cardiac surgical procedures. Anesth Analg. 2004;98:11–9. [CrossRef] [PubMed] [Google Scholar]
  43. Di Angelantonio E, Chowdhury R, Sarwar N, et al. B-Type natriuretic peptides and cardiovascular risk. Systematic review and meta-analysis of 40 prospective studies. Circulation 2009;120:2177–87. [CrossRef] [PubMed] [Google Scholar]
  44. Karthikeyan G, Moncur RA, Levine O, et al. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? A systematic review and meta-analysis of observational studies. J Am Coll Cardiol. 2009;54:1599–606. [CrossRef] [Google Scholar]
  45. Rutten JH, Steyerberg EW, Boomsma F, et al. N-terminal pro-brain natriuretic peptide testing in the emergency department: beneficial effects on hospitalization, costs, and outcome. Am Heart J. 2008;156:71–7. [CrossRef] [Google Scholar]
  46. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circ J Am Heart Assoc. 2003;107:499–511. [Google Scholar]
  47. Farrer M, Fulcher G, Albers CJ, Neil HA, Adams PC, Alberti KG. Patients undergoing coronary artery bypass graft surgery are at high risk of impaired glucose tolerance and diabetes mellitus during the first postoperative year. Metabolism. 1995;44:1016–27. [CrossRef] [PubMed] [Google Scholar]
  48. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288:2579–88. [CrossRef] [PubMed] [Google Scholar]
  49. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81. [CrossRef] [PubMed] [Google Scholar]
  50. Furnary AP, Gao G, Grunkemeier GL, et al. Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003;125:1007–21. [CrossRef] [Google Scholar]
  51. Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. 2003;290:2041–7. [CrossRef] [PubMed] [Google Scholar]
  52. Guvener M, Pasaoglu I, Demircin M, Oc M. Perioperative hyperglycemia is a strong correlate of postoperative infection in type II diabetic patients after coronary artery bypass grafting. Endocr J. 2002;49:531–7. [CrossRef] [PubMed] [Google Scholar]
  53. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–67. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.