Free Access
Issue
J Extra Corpor Technol
Volume 43, Number 1, March 2011
Page(s) 13 - 18
DOI https://doi.org/10.1051/ject/201143013
Published online 15 March 2011
  1. Arrowsmith JE, Grocott H, Reves JG, Newman MF. Central nervous system complications of cardiac surgery. Br J Anaesth. 2000;84:378–93. [CrossRef] [Google Scholar]
  2. Huang YCT. Monitoring oxygen delivery in the critically ill. Chest. 2005;128:554S–60S. [CrossRef] [PubMed] [Google Scholar]
  3. Dubin A, Pozo MO, Edul VSK, et al. Urinary bladder partial carbon dioxide tension during hemorrhagic shock and reperfusion: An observational study. Crit Care. 2005;9:R556–61. [CrossRef] [PubMed] [Google Scholar]
  4. Dunham CM, Sosnowski C, Porter JM, Siegal J, Kohli C. Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patient: A pilot study. J Trauma. 2002;52:40–6. [PubMed] [Google Scholar]
  5. Isenberg SJ, Shoemaker WC. The transconjunctival oxygen monitor. Am J Ophthalmol. 1983;95:803–6. [CrossRef] [Google Scholar]
  6. Abraham E, Fink S. Conjunctival oxygen tension monitoring in emergency department patients. Am J Emerg Med. 1988;6:549–54. [CrossRef] [Google Scholar]
  7. Abraham E, Lee G, Morgan M. Conjunctival oxygen tension monitoring during helicopter transport of critically ill patients. Ann Emerg Med. 1986;15:782–6. [CrossRef] [Google Scholar]
  8. Isenberg SJ, Neumann D, Fink S, Rich R. Continuous oxygen monitoring of the conjunctiva in neonates. J Perinatol. 2002;22:46–9. [CrossRef] [PubMed] [Google Scholar]
  9. Oropello JM, Manasia A, Hannon E, Leibowitz A, Benjamin E. Continuous fiberoptic arterial and venous blood gas monitoring in hemorrhagic shock. Chest. 1996;109:1049–55. [CrossRef] [PubMed] [Google Scholar]
  10. Haller M, Kilger E, Briegel J, Forst H, Peter K. Continuous intra-arterial blood gas and pH monitoring in critically ill patients with severe respiratory failure: A prospective criterion standard study. Crit Care Med. 1994;22:580–7. [CrossRef] [PubMed] [Google Scholar]
  11. Demidenko E. Mixed Model Analysis – Mixed Model Theory and Applications. Hoboken: John Wiley & Sons; 2004. [CrossRef] [Google Scholar]
  12. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Available at: http://www.R-project.org. Accessed December 15, 2006. [Google Scholar]
  13. Pinheiro J, Bates D, DebRoy S, Sarkar D. NLME: Linear and nonlinear mixed effects models, version 3.1-78. Available at: cran.r-project.org/web/packages/nlme/index.html. Accessed December 15, 2006. [Google Scholar]
  14. Jurban A. Pulse oximetry. Crit Care Med. 1999;3:R11–7. [Google Scholar]
  15. Abraham E, Fink SE, Markle DR, Pinholster G, Tsand M. Continuous monitoring of the tissue pH with a fiberoptic conjunctival sensor. Ann Emerg Med. 1985;14:840–4. [CrossRef] [Google Scholar]
  16. Swain A, Robins RC, Balaban RS, et al. The effects of cardiopulmonary bypass on brain and heart metabolism: A 31P NMR Study. Magn Reson Med. 2005;15:446–55. [Google Scholar]
  17. Fatt I. Transmucosal measurement of blood pH at the palpebral conjunctiva. Acta Anaesthesiol Scand. 1978;68(Suppl):142–4. [CrossRef] [Google Scholar]
  18. Imai T, Sekigurchi T, Nagai Y, et al. Continuous monitoring of gastric intraluminal carbon dioxide pressure, cardiac output and end tidal carbon dioxide pressure in the perioperative period in patients receiving cardiovascular surgery using cardiopulmonary bypass. Crit Care Med. 2002;30:44–51. [CrossRef] [PubMed] [Google Scholar]
  19. Ohri SK, Bowles CW, Mathie RT, Lawrence DR, Keogh BE, Taylor KM. Effect of cardiopulmonary bypass perfusion protocols on gut tissue oxygenation and blood flow. Ann Thorac Surg. 1997;64:163–70. [CrossRef] [Google Scholar]
  20. Steiner T, Pilz J, Schellinger P, et al. Multimodal online monitoring in middle cerebral artery territory stroke. Stroke. 2001;32:2500–6. [CrossRef] [PubMed] [Google Scholar]
  21. Brawanski A, Faltermeier R, Rothoerl RD, Woertgen C. Comparison of near-infrared spectroscopy and tissue PO2 time series in patients after severe head injury and aneurismal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2002;22:605–11. [CrossRef] [PubMed] [Google Scholar]
  22. Orihashi K, Sueda T, Okada K, Imai K. Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg. 2004;26:907–11. [CrossRef] [Google Scholar]
  23. Fink S, Abraham E, Ehrlich H. Postoperative monitoring of conjunctival oxygen tension and temperature. Int J Clin Monit Comput. 1988;5:37–43. [CrossRef] [PubMed] [Google Scholar]
  24. Isenberg SJ, McRee WE, Jedrzynski MS. Conjunctival hypoxia in diabetes mellitus. Invest Ophthalmol Vis Sci. 1986;27:1512–5. [Google Scholar]
  25. Isenberg SJ, McRee WE, Jedrzynski MS, et al. Effects of sickle cell anemia on conjunctival oxygen tension and temperature. Arch Intern Med. 1987;147:67–9. [CrossRef] [PubMed] [Google Scholar]
  26. Isenberg SJ, Green BF. Changes in conjunctival oxygen tension and temperature with advancing age. Crit Care Med. 1985;13:683–5. [CrossRef] [PubMed] [Google Scholar]
  27. Kram HB, Fink S, Tsang M, Markle D, Appel PL, Shoemaker WC. Noninvasive measurement of tissue carbon dioxide tension using a fiberoptic conjunctival sensor: Effects of respiratory and metabolic alkalosis and acidosis. Crit Care Med. 1988;16:280–4. [CrossRef] [PubMed] [Google Scholar]
  28. Rutherford WF, Panacek EA, Griffith JK, et al. Prediction of changing cerebral blood flow by use of the conjunctival oxygen tension/arterial oxygen tension index. Crit Care Med. 1989;17:1328–32. [CrossRef] [PubMed] [Google Scholar]
  29. Cheung ATW, Jahr JS, Driessen B, et al. The effects of hemoglobin glutamer-200 (bovine) on the microcirculation in a canine hypovolemia model: A noninvasive computer-assisted intravital microscopy study. Anesth Analg. 2001;93:832–8. [CrossRef] [PubMed] [Google Scholar]
  30. Arai T, Silvern DA, Gupte PM, Shibutani K, Lees DE. The changes in brain surface, intracerebral tissue and transconjunctival oxygen tension during hypo-hyperventilation. J Anesth. 1990;2:110–5. [CrossRef] [PubMed] [Google Scholar]
  31. Sjostrom P, Wilklund L, Odlind B. Conjunctival oxygen tension is influenced by plasma and blood volume, and flow through the external carotid artery. Int J Clin Monit. 1994;11:99–103. [CrossRef] [PubMed] [Google Scholar]
  32. Haljamae H, Frid I, Holm J, Holm S. Continuous conjunctival oxygen tension (PcjO2) monitoring for assessment of cerebral oxygenation and metabolism during carotid artery surgery. Acta Anaesthesiol Scand. 1989;33:610–6. [CrossRef] [Google Scholar]
  33. Asmussen J, Gellet S, Pilegaard H, Gottrup F. Conjunctival oxygen tension measurements for assessment of tissue oxygen tension during pulmonary surgery. Eur Surg Res. 1994;26:372–9. [CrossRef] [PubMed] [Google Scholar]
  34. Tormann T, Jung F, Simon J, Schwerdtfeger K, Kiesewetter H, Racenberg E. [Intra and post operative effect of different hydroxyethyl starch solutions on the flow properties of the blood and on the oxygen partial pressure of the conjunctiva]. Anaesthesist. 1990;39:166–72 [in German]. [PubMed] [Google Scholar]
  35. Gottrup F, Gellet S, Kirkegaard L, Hansen ES, Johansen G. Effect of hemorrhage and resuscitation on subcutaneous conjunctival, and transcutaneous oxygen tension in relation to hemodynamic variables. Crit Care Med. 1989;17:904–7. [CrossRef] [PubMed] [Google Scholar]
  36. Heyworth J. Conjunctival oxygen monitoring during cardiopulmonary resuscitation. Arch Emerg Med. 1989;6:128–36. [CrossRef] [Google Scholar]
  37. Tin W, Milligan DWA, Pennefather P, Hey E. Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;84:F106–10. [Google Scholar]
  38. Chow LC, Wright KW, Sola A. Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics. 2003;111:339–45. [CrossRef] [PubMed] [Google Scholar]
  39. York JR, Landers S, Kirby RS, Arbogast PG, Penn JS. Arterial oxygen fluctuation and retinopathy of prematurity in very-low-birth-weight infants. J Perinatol. 2004;24:82–7. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.