Free Access
Issue
J Extra Corpor Technol
Volume 43, Number 1, March 2011
Page(s) P58 - P64
DOI https://doi.org/10.1051/ject/201143P58
Published online 15 March 2011
  1. Spiess BD, Harrow J, Kaplan JA. Transfusion medicine and coagulation disorders. In: Kaplan JA, Reich DL, Lake CL, Konstadt SN, eds. Kaplan’s Cardiac Anesthesia, 5th Ed. Philadelphia, PA: Saunders Elsvevier; 2006:937–84. [Google Scholar]
  2. Ferraris VA, Ferraris SP, Saha SP, et al. Perioperative blood transfusion and blood conservation in cardiac surgery. The Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg. 2007;83(Suppl):S27–86. Review. [CrossRef] [Google Scholar]
  3. Duggan E, O’Dwyer MJ, Caraher E, et al. Coagulopathy after cardiac surgery may be influenced by a functional plasminogen activator inhibitor polymorphism. Anesth Analg. 2007;104:1343–7. [CrossRef] [PubMed] [Google Scholar]
  4. Welsby IJ, Padgoreanu MV, Phillips-Bute B, et al. Genetic factors contribute to bleeding after cardiac surgery. J Thromb Haemost. 2005;3:1206–12. [CrossRef] [Google Scholar]
  5. Tantry US, Bliden KP, Suarez TA, Kreutz RP, Kichiara J, Gurbel PA. Hypercoagulability, platelet function, inflammation and coronary artery disease acuity: Results of the Thrombotic Risk Progression (TRIP) study. Platelets. 2010;21:360–7. [CrossRef] [PubMed] [Google Scholar]
  6. Pineda J, Marin F, Marco P, et al. Premature coronary artery disease in young age (<45) subjects: Interactions of lipid profile, thrombophillic and hemostatic markers. Int J Cardiol. 2009;136:222–5. [CrossRef] [Google Scholar]
  7. Zorio E, Gilabert-Estelles J, Espana F, Ramon LA, Cosin R, Estelles A. Fibrinolysis: The key to new pathogentic mechanisms. Curr Med Chem. 2008;15:923–9. [CrossRef] [Google Scholar]
  8. Benza RL, Grennett HE, Bouge RC, et al. Gene polymorphisms for plasminogen activator inhibitor-1/tissue plasminogen activator and development of allograft coronary artery disease. Circulation. 1998;98:2248–54. [CrossRef] [PubMed] [Google Scholar]
  9. Boekholdt SM, Peters RJ, de Maat MP, et al. Interaction between a genetic variant of the platelet fibrinogen receptor and fibrinogen levels in determining the risk of cardiovascular events. Am Heart J. 2004;14:181–6. [CrossRef] [Google Scholar]
  10. Zotz RB, Winkelmann BR, Muller C, Boehm BO, Marz W, Scharf RE. Association of polymorphisms of platelet membrane integrins alpha IIb(beta)3 (HPA-1bPI) and alpha 2 (beta)1(alpha8077TT) with premature myocardial infarction. J Thromb Haemost. 2005;3:1522–9. [CrossRef] [Google Scholar]
  11. Pivalizza EG. TEG and perioperative hypercoagulability. Anesth Analg. 2006;102:334–5. [CrossRef] [PubMed] [Google Scholar]
  12. Akay OM, Ustumer Z, Canturk Z, Mutlu FS, Gulbas Z. Laboratory investigation of hypercoagulability in cancer patients rotation thromboelastography. Med Oncol. 2009;26:358–64. [CrossRef] [PubMed] [Google Scholar]
  13. Kashuk JL, Moore EE, Sable A, et al. Rapid thromboelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery. 2009;146:764–72. [CrossRef] [PubMed] [Google Scholar]
  14. Ascione R, Ghosh A, Rogers CA, Cohen A, Monk C, Angelini GD. In-hospital patients exposed to clopidogrel before coronary artery bypass graft surgery: A word of caution. Ann Thorac Surg. 2005;79:1210–6. [CrossRef] [Google Scholar]
  15. Chen L, Bracey AW, Radovancevic R, et al. Clopidogrel and bleeding in patients undergoing elective coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2004;128:425–31. [CrossRef] [Google Scholar]
  16. Chu MW, Wilson SR, Novick RJ, Stitt LW, Quantz MA. Does clopidogrel increase blood loss following coronary artery bypass surgery? Ann Thorac Surg. 2004;78:1536–41. [CrossRef] [Google Scholar]
  17. Kapetanakis EI, Medlam DA, Boyce SW, et al. Clopidogrel administration prior to coronary artery bypass grafting surgery: The cardiologist’s panacea or the surgeon’s headache? Eur Heart J. 2005;26:576–83. [CrossRef] [PubMed] [Google Scholar]
  18. Ray JG, Deniz S, Olivieri A, et al. Increased blood product use among coronary artery bypass patients prescribed preoperative aspirin and clopidogrel. BMC Cardiovasc Disord. 2003;3:3. [CrossRef] [Google Scholar]
  19. Godino C, Mednolicchio L, Figini F, et al. Comparison of VerifyNowP2Y12 test and Flow Cytometry for monitoring individual platelet response to clopidogrel. What is the cut-off value for identifying patients who are low responders to clopidogrel? Thromb J 2009;7:4. [CrossRef] [PubMed] [Google Scholar]
  20. Dyszkiewicz-Korpanty AM, Kim A, Burner JD, Frenkel EP, Sarode R. Comparison of a rapid platelet function assay–Verfiy Now Aspirin–with whole blood impedance aggregometry for the detection of aspirin resistance. Thromb Res. 2007;120:485–8. [CrossRef] [Google Scholar]
  21. Spiess BD. Con: Continuation of aspirin/clopidogrel for cardiac surgery. J Cardiothorac Anesth. 2007;21:606–9. [CrossRef] [Google Scholar]
  22. Gravlee GP, Arora S, Lavender SW, et al. Predictive value of blood clotting tests in cardiac surgical patients. Ann Thorac Surg. 1994;58:216–21. [CrossRef] [Google Scholar]
  23. Spiess BD. A little coagulation knowledge can be dangerous. Can J Anaesth. 2009;56:478–82. [CrossRef] [PubMed] [Google Scholar]
  24. Borsig L. Antimetastatic activities of heparin and modified heparins. Experimental evidence. Thromb Res. 2010;125:S66–71. [CrossRef] [Google Scholar]
  25. Casu B, Naggi A, Torri G. Heparin-derived heparan sulfate mimics to modulate heparin sulfate-protein interactions in inflammation and cancer. Matrix Biol. 2010;29:442–52. [CrossRef] [Google Scholar]
  26. Lever R, Smailbegovic R, Page CP. Locally available heparin modulates inflammatory-cell recruitment in a manner independent of anticoagulant activity. Eur J Pharmacol. 2010;630:137–44. [CrossRef] [Google Scholar]
  27. Li JP, Vlodavsky I. Heparin, heparin sulfate and heparanase in inflammatory reactions. Thromb Haemost. 2009;102:823–8. [CrossRef] [PubMed] [Google Scholar]
  28. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: Host associated molecular patterns for initiation and modulation of inflammation. FASEB. 2006;20:9–22. [CrossRef] [PubMed] [Google Scholar]
  29. Vlodovsky I, Ilan N, Naggi A, Casu B. Heparanase: Structure, biological functions and inhibition by heparin-derived mimetics of heparin sulfate. Curr Pharm Des. 2007;13:2057–73. [CrossRef] [Google Scholar]
  30. Borawski J, Gozdzikiewiz J, Dubowski M, Pawalak K, Mysliwiec M. Tissue factor pathway inhibitor release and depletion of sulodexide in humans. Adv Med Sci. 2009;54:32–6. [CrossRef] [PubMed] [Google Scholar]
  31. Ilhrcke NS, Platt JL. Shedding of heparin sulfate proteoglycan by stimulated endothelial cells: Evidence for proteolysis of cell-surface molecules. J Cell Physiol. 1996;168:625–37. [CrossRef] [PubMed] [Google Scholar]
  32. Eisses MJ, Velan T, Aldea GS, Chandler WL. Strategies to reduce hemostatic activation during cardiopulmonary bypass. Thromb Res. 2006;117:689–703. [CrossRef] [Google Scholar]
  33. O’Gara PJ, Aldea GS, Shemin RJ, Shapira OM. Heparin-bonded circuit with low systemic anticoagulation in a patient with heparin-induced thrombocytopenia: A case report. J Extra Corpor Technol. 1999;31:142–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Paparella D, Al Radi OO, Meng QH, Venner T, Teoh K, Young E. The effects of high-dose heparin on inflammatory and coagulation parameters following cardiopulmonary bypass. Blood Coagul Fibrinolysis. 2005;16:323–8. [CrossRef] [PubMed] [Google Scholar]
  35. Warkentin TE, Crowthen MA. Reversing anticoagulants both old and new. Can J Anaesth. 2002;49:811–25. [Google Scholar]
  36. Bruins P, te Velthuis H, Eerenberg-Belmer AJ, et al. Heparinprotamine complexes and C-reactive protein induced activation of the classical complement pathway: Studies in patients undergoing cardiac surgery and in vitro. Thromb Haemost. 2000;84:237–43. [CrossRef] [PubMed] [Google Scholar]
  37. Shibamiya A, Tabuchi N, Chung J, Suanori M, Koyama T. Formation of tissue factor-bearing leukocytes during and after cardiopulmonary bypass. Thromb Haemost. 2004;92:124–31. [CrossRef] [PubMed] [Google Scholar]
  38. Chandler WL, Velan T. Secretion of tissue plasminogen activator and plasminogen activator inhibitor 1 during cardiopulmonary bypass. Thromb Res. 2003;112:185–92. [CrossRef] [Google Scholar]
  39. Yavari M, Becker RC. Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass. J Thromb Thrombolysis. 2009;27:95–104. [CrossRef] [PubMed] [Google Scholar]
  40. Chandler WL, Velan T. Plasmin generation and D-dimer formation during cardiopulmonary bypass. Blood Coagul Fibrinolysis. 2004;15:583–91. [PubMed] [Google Scholar]
  41. Chandler WL, Fitch JCK, Wall MH, et al. Individual variations in the fibrinolytic response during and after cardiopulmonary bypass. Thromb Haemost. 1995;74:1293–7. [CrossRef] [PubMed] [Google Scholar]
  42. Despotis GJ, Avidan MS, Hogue CW. Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg. 2001;72:S1821–31. [CrossRef] [Google Scholar]
  43. Karkouti K, McClusky S, Syed S, Pazaratz C, Poonawala H, Crowther M. The influence of perioperative coagulation status on postoperative blood loss in complex cardiac surgery: A prospective observational study. Anesth Analg. 2010;110:1533–40. [CrossRef] [PubMed] [Google Scholar]
  44. Beckman SR, Carlile D, Bissinger RC, Burrell M, Winkler T, Shely WW. Improved coagulation and blood conservation in the golden hours after cardiopulmonary bypass. J Extra Corpor Technol. 2007;39:103–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Diamanti M, Tushuizen ME, Sturk A, Niwland R. Cellular microparticles: New players in the field of vascular disease? Eur J Clin Invest. 2004;34:392–401. [CrossRef] [PubMed] [Google Scholar]
  46. Khan SY, Kelher MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40 and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. 2006;108:2455–62. [CrossRef] [PubMed] [Google Scholar]
  47. Moganansundram S, Hunt BJ, Sykes K, et al. The relationship among thromboelastography, hemostatic variables, and bleeding after cardiopulmonary bypass surgery in children. Anesth Analg. 2010;110:995–1002. [CrossRef] [PubMed] [Google Scholar]
  48. Hertfelden HJ, Bos M, Weber D, Winkler K, Hanfland P, Preusse CJ. Perioperative monitoring of primary and secondary hemostasis in coronary artery bypass grafting. Semin Thromb Hemost. 2005;31:426–40. [CrossRef] [PubMed] [Google Scholar]
  49. Cherng YG, Chao A, Shih RL, et al. Preoperative evaluation and postoperative prediction of hemostatic function with thromboelastography in patients undergoing redo cardiac surgery. Acta Anaesthesiol Sin. 1998;36:179–89. [Google Scholar]
  50. Kettner SC, Kozck SA, Groetzner JP, et al. Effects of hypothermia on thromboelastography in patients undergoing cardiopulmonary bypass. Br J Anaesth. 1998;80:313–7. [CrossRef] [Google Scholar]
  51. Cammerer U, Dietrich W, Rampf T, Braun SL, Richter JA. The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. Anesth Analg. 2003;96:51–7. [CrossRef] [PubMed] [Google Scholar]
  52. Preisman S, Kogan A, Itzkovsky K, Leikin G, Raanani E. Modified thromboelastography evaluation of platelet dysfunction in patients undergoing coronary artery surgery. Eur J Cardiothorac Surg. 2010;37:1367–74. [CrossRef] [Google Scholar]
  53. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88:312–9. [CrossRef] [PubMed] [Google Scholar]
  54. Enriquez LJ, Shore-Lesserson L. Point-of-care coagulation testing and transfusion algorithms. Br J Anaesth. 2009;103:114–22. [Google Scholar]
  55. Despotis GJ, Skubas NJ, Goodnough LT. Optimal management of bleeding and transfusion in patients undergoing cardiac surgery. Semin Thorac Cardiovasc Surg. 1999;11:84–104. [CrossRef] [Google Scholar]
  56. Cattaneo M. The use of desmopressin in open heart surgery. Haemophilia. 2008;14:S40–7. [CrossRef] [PubMed] [Google Scholar]
  57. Weber CF, Dietrich W, Spannagl M, Hofstetter C, Jambor C. A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole blood aggregometry in patients after cardiac surgery. Anesth Analg. 2010;110:702–7. [CrossRef] [PubMed] [Google Scholar]
  58. Mongan PD, Hosking MP. The role of desmopressin acetate in patients undergoing coronary artery bypass surgery. A controlled clinical trial with thromboelastographic risk stratification. Anesthesiology. 1992;77:38–46. [CrossRef] [PubMed] [Google Scholar]
  59. Wang X, Zheng Z, Ao H, et al. A comparison before and after aprotinin was suspended in cardiac surgery: Different results in the real world from a single cardiac center in China. J Thorac Cardiovasc Surg. 2009;138:897–903. [CrossRef] [Google Scholar]
  60. Willis CD, Cameron PA, Phillips LE. Clinical guidelines and off-license recombinant activated factor VII: Content, use and association with patient outcomes. J Thromb Haemost. 2009;7:2016–22. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.