Free Access
Issue
J Extra Corpor Technol
Volume 43, Number 3, September 2011
Page(s) 137 - 143
DOI https://doi.org/10.1051/ject/201143137
Published online 15 September 2011
  1. Wan IY, Arifi AA, Wan S, et al. Beating heart revascularization with or without cardiopulmonary bypass: Evaluation of inflammatory response in a prospective randomized study. J Thorac Cardiovasc Surg. 2004;127:1624–31. [CrossRef] [Google Scholar]
  2. Dong X, Liu Y, Du M, et al. P38 mitogen-activated protein kinase inhibition attenuates pulmonary inflammatory response in a rat cardiopulmonary bypass model. Eur J Cardiothorac Surg. 2006;30:77–84. [CrossRef] [Google Scholar]
  3. Ryter SW, Morse D, Choi AM. Carbon monoxide: To boldly go where NO has gone before. Sci STKE 2004:RE6. [PubMed] [Google Scholar]
  4. Lavitrano M, Smolenski RT, Musumeci A, et al. Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J. 2004;18:1093–5. [CrossRef] [PubMed] [Google Scholar]
  5. Goebel U, Siepe M, Mecklenburg A, et al. Carbon monoxide inhalation reduces pulmonary inflammatory response during cardiopulmonary bypass in pigs. Anesthesiology. 2008;108:1025–36. [CrossRef] [PubMed] [Google Scholar]
  6. Goebel U, Siepe M, Schwer CI, et al. Inhaled carbon monoxide prevents acute kidney injury in pigs after cardiopulmonary bypass by inducing a heat shock response. Anesth Analg. 2010;111:29–37. [CrossRef] [PubMed] [Google Scholar]
  7. Melley DD, Finney SJ, Elia A, et al. Arterial carboxyhemoglobin level and outcome in critically ill patients. Crit Care Med. 2007;35:1882–7. [CrossRef] [PubMed] [Google Scholar]
  8. Farrugia G, Lei S, Lin X, et al. A major role for carbon monoxide as an endogenous hyperpolarizing factor in the gastrointestinal tract. Proc Natl Acad Sci U S A. 2003;100:8567–70. [CrossRef] [PubMed] [Google Scholar]
  9. Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: Relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 1991;28(1–3):52–61. [PubMed] [Google Scholar]
  10. Otterbein LE, Otterbein SL, Ifedigbo E, et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. Am J Pathol. 2003;163:2555–63. [CrossRef] [Google Scholar]
  11. You XM, Nasrallah F, Darling E, et al. Rat cardiopulmonary bypass model:Application of a miniature extracorporeal circuit composed of asanguinous prime. J Extra Corpor Technol. 2005;37:60–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med. 1985;26:72–6. [Google Scholar]
  13. Gajic O, Lee J, Doerr CH, et al. Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med. 2003;167: 1057–63. [Google Scholar]
  14. Wan S, Arifi AA, Wan IY, et al. Cytokine responses to myocardial revascularization on cardiopulmonary bypass: Intermittent cross-clamping versus blood cardioplegic arrest. Ann Thorac Cardiovasc Surg. 2002;8:12–7. [Google Scholar]
  15. Li P, Sanders J, Hawe E, et al. Inflammatory response to coronary artery bypass surgery: Does the heme-oxygenase-1 gene microsatellite polymorphism play a role? Chin Med J (Engl). 2005;118:1285–90. [Google Scholar]
  16. Giomarelli P, Scolletta S, Borrelli E, et al. Myocardial and lung injury after cardiopulmonary bypass: Role of interleukin (IL)-10. Ann Thorac Surg. 2003;76:117–23. [CrossRef] [Google Scholar]
  17. Zuckerbraun BS, McCloskey CA, Gallo D, et al. Carbon monoxide prevents multiple organ injury in a model of hemorrhagic shock and resuscitation. Shock. 2005;23:527–32. [PubMed] [Google Scholar]
  18. Dolinay T, Szilasi M, Liu M, et al. Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med. 2004;170:613–20. [Google Scholar]
  19. Nakao A, Toyokawa H, Abe M, et al. Heart allograft protection with low-dose carbon monoxide inhalation: Effects on inflammatory mediators and alloreactive T-cell responses. Transplantation. 2006;81:220–30. [CrossRef] [PubMed] [Google Scholar]
  20. Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276: L688–94. [Google Scholar]
  21. Dong GH, Xu B, Wang CT, et al. A rat model of cardiopulmonary bypass with excellent survival. J Surg Res. 2005;123:171–5. [CrossRef] [Google Scholar]
  22. Mackensen GB, Sato Y, Nellgard B, et al. Cardiopulmonary bypass induces neurologic and neurocognitive dysfunction in the rat. Anesthesiology. 2001;95:1485–91. [CrossRef] [PubMed] [Google Scholar]
  23. Senra DF, Katz M, Passerotti GH, et al. A rat model of acute lung injury induced by cardiopulmonary bypass. Shock. 2001;16:223–6. [CrossRef] [PubMed] [Google Scholar]
  24. Steinberg JB, Kapelanski DP, Olson JD, et al. Cytokine and complement levels in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1993;106:1008–16. [CrossRef] [Google Scholar]
  25. Ashraf S, Butler J, Tian Y, et al. Inflammatory mediators in adults undergoing cardiopulmonary bypass: Comparison of centrifugal and roller pumps. Ann Thorac Surg. 1998;65:480–4. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.