Free Access
Review
Issue |
J Extra Corpor Technol
Volume 44, Number 4, December 2012
|
|
---|---|---|
Page(s) | 241 - 249 | |
DOI | https://doi.org/10.1051/ject/201244241 | |
Published online | 15 December 2012 |
- Waring W, Thomson A, Adwani S, et al. Cardiovascular effects of acute oxygen administration in healthy adults. J Cardiovasc Pharmacol. 2003;42:245–250. [CrossRef] [PubMed] [Google Scholar]
- Thomson A, Drummond G, Waring W, Webb D, Maxwell S. Effects of short-term isocapnic hyperoxia and hypoxia on cardiovascular function. J Appl Physiol. 2006;101:809–816. [CrossRef] [PubMed] [Google Scholar]
- Haque W, Boehmer J, Clemson B, et al. Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J Am Coll Cardiol. 1996;27:353–357. [CrossRef] [Google Scholar]
- Mak S, Azevedo E, Liu P, Newton G. Effect of hyperoxia on left ventricular function and filling pressures in patients with and without congestive heart failure. Chest. 2001;120:467–473. [CrossRef] [PubMed] [Google Scholar]
- Ganz W, Donoso R, Marcus H, Swan H. Coronary hemodynamics and myocardial oxygen metabolism during oxygen breathing in patients with and without coronary artery disease. Circulation. 1972;45:763–768. [CrossRef] [PubMed] [Google Scholar]
- McNulty P, King N, Scott S, et al. Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization. Am J Physiol Heart Circ Physiol. 2005;288:H1057–H1062. [CrossRef] [PubMed] [Google Scholar]
- McNulty P, Robertson B, Tulli M, et al. Effect of hyperoxia and vitamin C on coronary blood flow in patients with ischaemic heart disease. J Appl Physiol. 2007;102:2040–2045. [CrossRef] [PubMed] [Google Scholar]
- Farquhar H, Weatherall M, Wijesinghe M, et al. Systemic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158:371–377. [CrossRef] [Google Scholar]
- Thorborg P, Gustafsson U, Sjoberg F, Harrison D, Lewis D. The effect of hyperoxemia and ritanserin on skeletal muscle microflow. J Appl Physiol. 1990;68:1494–1500. [CrossRef] [PubMed] [Google Scholar]
- Sjoberg F, Gustafsson U, Eintrei C. Specific blood flow reducing effects of hyperoxaemia on high flow capillaries in the pig brain. Acta Physiol Scand. 1999;165:33–38. [CrossRef] [Google Scholar]
- Tsai A, Cabrales P, Winslow R, Intaglietta M. Microvascular oxygen distribution in the awake hamster window chamber model during hyperoxia. Am J Physiol Heart Circ Physiol. 2003;285:H1537–H1545. [CrossRef] [PubMed] [Google Scholar]
- Joachimsson P, Sjoberg F, Forsman M, et al. Adverse effects of hyperoxemia during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;112:812–819. [CrossRef] [Google Scholar]
- Han D, Williams E, Cadenas E. Mitochondrial respiratory chaindependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001;353:411–416. [CrossRef] [PubMed] [Google Scholar]
- Circu M, Aw T. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48:749–762. [CrossRef] [Google Scholar]
- Adiga I, Nair R. Multiple signaling pathways coordinately mediate reactive oxygen species dependent cardiomyocyte hypertrophy. Cell Biochem Funct. 2008;26:346–351. [CrossRef] [Google Scholar]
- Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin–proteosome pathway. Proc Natl Acad Sci USA. 1990;95:7987–7992. [CrossRef] [PubMed] [Google Scholar]
- Neumcke I, Schneider B, Fandrey J, Pagel H. Effects of pro- and antioxidative compounds on renal production of erythropoietin. Endocrinology. 1999;140:641–645. [CrossRef] [PubMed] [Google Scholar]
- Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischaemia. Circulation. 2007;116:1896–1906. [CrossRef] [PubMed] [Google Scholar]
- Jordan J, Zhao Z, Vinten-Johansen J. The role of neutrophils in myocardial ischaemia–reperfusion injury. Cardiovasc Res. 1999;43:860–878. [CrossRef] [Google Scholar]
- Bolli R, Patel B, Jeroudi M, Lai E, McCay P. Demonstration of free radical generation in stunned myocardium of intact dogs with the use of spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest. 1988;82:476–485. [CrossRef] [PubMed] [Google Scholar]
- Bolli R, Jeroudi M, Patel B, et al. Direct evidence that oxygen-derived free radicals contribute to post-ischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA. 1989;86:4695–4699. [CrossRef] [PubMed] [Google Scholar]
- Clermont G, Vergely C, Jazayeri S, et al. Systemic free radical activation is a major event involved in myocardial oxidative stress related to cardiopulmonary bypass. Anesthesiology. 2002;96:80–87. [CrossRef] [PubMed] [Google Scholar]
- Tortolani A, Powell S, Misik V, et al. Detection of alkolyl and carbon centered free radicals in coronary sinus blood from patients undergoing elective cardioplegia. Free Radic Biol Med. 1993;14:421–426. [CrossRef] [Google Scholar]
- Brueckl C, Kaestle S, Kerem A, et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34:453–463. [Google Scholar]
- Qadan M, Battista C, Gardner S, et al. Oxygen and surgical site infection. Anesthesiology. 2010;113:369–377. [CrossRef] [PubMed] [Google Scholar]
- Inoue T, Ku K, Kaneda T, et al. Cardioprotective effects of lowering oxygen tension after aortic unclamping on cardiopulmonary bypass during coronary artery bypass grafting. Circ J. 2002;65:213–218. [CrossRef] [PubMed] [Google Scholar]
- Ihnken K, Winkler A, Schlensak C, et al. Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide. J Thorac Cardiovasc Surg. 1998;116:327–334. [CrossRef] [Google Scholar]
- Murry C, Jennings R, Reimer K. Preconditioning with ischaemia: a delay of lethal cell injury in ischaemic myocardium. Circulation. 1986;74:1124–1136. [CrossRef] [PubMed] [Google Scholar]
- Kersten J, Schmeling T, Pagel P, Gross G, Warltier D. Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase. Anesthesiology. 1997;87:361–370. [CrossRef] [PubMed] [Google Scholar]
- Kaljusto M, Stenslokken K, Mori T, et al. Preconditioning effects of steroids and hyperoxia on cardiac ischemia–reperfusion injury and vascular reactivity. Eur J Cardiothorac Surg. 2008;33:353–363. [Google Scholar]
- Petrosillo G, Di Venosa N, Moro N, et al. In vivo hyperoxic preconditioning protects against rat heart ischaemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release. Free Radic Biol Med. 2011;50:477–483. [CrossRef] [Google Scholar]
- Pourkhalili K, Hajizadeh S, Tiraihi T, et al. Ischaemia and reperfusioninduced arrhythmias: role of hyperoxic preconditioning. J Cardiovasc Med. 2009;10:635–642. [CrossRef] [PubMed] [Google Scholar]
- Pourkhalili K, Hajizadeh S, Akbari Z, et al. Hyperoxic preconditioning fails to confer additional protection against ischaemia–reperfusion injury in acute diabetic rat heart. EXCLI Journal. 2012;11:263–273. [PubMed] [Google Scholar]
- Van de Water J, Kagey K, Miller I, et al. Response of the lung to six to 12 hours of 100 percent oxygen inhalation in normal man. N Engl J Med. 1970;283:621–626. [CrossRef] [PubMed] [Google Scholar]
- Comroe J, Dripps R, Dumke P, Deming M. Oxygen toxicity. The effect of inhalation of high concentrations of oxygen for twenty-four hours on normal men at sea level and at a simulated altitude of 18,000 feet. JAMA. 1945;128:710–717. [CrossRef] [Google Scholar]
- Nader-Djabal N, Knight P, Davidson B, Johnson K. Hyperoxia exacerbates microvascular lung injury following acid aspiration. Chest. 1997;112:1607–1614. [CrossRef] [PubMed] [Google Scholar]
- Haniuda M, Dresler C, Mizuta T, Cooper J, Patterson G. Free radical-mediated vascular injury in lungs preserved at moderate hypothermia. Ann Thorac Surg. 1995;60:1376–1381. [CrossRef] [Google Scholar]
- Schelensak C, Doenst T, Preusser S, et al. Cardiopulmonary bypass reduction of bronchial blood flow: A potential mechanism for lung injury in a neonatal pig model. J Thorac Cardiovasc Surg. 2002;123:1199–1205. [CrossRef] [Google Scholar]
- Sinclair D, Haslam P, Quinlan G, Pepper J, Evans T. The effect of cardiopulmonary bypass on intestinal and pulmonary endothelial permeability. Chest. 1995;108:718–724. [CrossRef] [PubMed] [Google Scholar]
- Pizov R, Weiss Y, Oppenheim-Eden A, et al. High oxygen concentration exacerbates cardiopulmonary bypass-induced lung injury. J Cardiothorac Vasc Anesth. 2000;14:519–523. [CrossRef] [Google Scholar]
- Reber A, Budmiger B, Wenk M, et al. Inspired oxygen concentration after cardiopulmonary bypass: Effects on pulmonary function with regard to endothelin-1 concentrations and venous admixture. Br J Anaesth. 2000;84:565–570. [CrossRef] [Google Scholar]
- Floyd T, Shah P, Price C, et al. Clinically silent cerebral ischaemic events after cardiac surgery: Their incidence, regional vascular occurrence and procedural dependence. Ann Thorac Surg. 2006;81:2160–2166. [CrossRef] [Google Scholar]
- Groom R, Reed D, Lennon P, et al. Detection and elimination of microemboli related to cardiopulmonary bypass.. Circ Cardiovasc Qual Outcomes. 2009;2:191–198. [CrossRef] [PubMed] [Google Scholar]
- Taylor R, Borger M, Weisel R, Fedorko L, Feindel C. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68:89–93. [CrossRef] [Google Scholar]
- Donald D, Fellows J. Relation of temperature, gas tension and hydrostatic pressure to the formation of gas bubbles in extracorporeally oxygenated blood. Surg Forum. 1959;10:589–592. [Google Scholar]
- Epstein P, Plesset M. On the stability of gas bubbles in liquid–gas solutions. J Chem Phys. 1950;18:1505–1509. [CrossRef] [Google Scholar]
- Nollert G, Nagashima M, Bucerius J, Shin’oka T, Jonas R. Oxygenation strategy and neurological damage after deep hypothermic circulatory arrest. 1. Gaseous microemboli. J Thorac Cardiovasc Surg. 1999;117:1166–1171. [CrossRef] [Google Scholar]
- Georgiadis D, Wenzel A, Lehmann D, et al. Influence of oxygen ventilation on Doppler microemboli signals in patients with artificial heart valves. Stroke. 1997;28:2189–2194. [CrossRef] [PubMed] [Google Scholar]
- Bigdeli M. Preconditioning with prolonged normobaric hyperoxia induces ischaemic tolerance partly by upregulation of antioxidant enzymes in rat brain tissue. Brain Res. 2009;1260:47–54. [CrossRef] [Google Scholar]
- Liu S, Shi H, Liu K, et al. Interstitial pO2 in ischaemic penumbra and core are differentially affected following transient focal cerebral ischaemia in rats. J Cereb Blood Flow Metab. 2004;24:343–349. [CrossRef] [PubMed] [Google Scholar]
- Sighal A, Benner T, Roccatagliata L, et al. A pilot study of normobaric oxygen therapy in acute ischaemic stroke. Stroke. 2005;36:797–802. [CrossRef] [PubMed] [Google Scholar]
- Kang J, Maltenfort M, Vibbert M, et al. Significance of arterial hyperoxia in critically ill stroke patients. Neurology. 2012;78 Meeting abstract PO2.222. [Google Scholar]
- Ostrowski R, Graupner G, Titova E, et al. The hyperbaric oxygen preconditioning-induced protection is mediated by a reduction of early apoptosis after transient global cerebral ischaemia. Neurobiol Dis. 2008;29:1–13. [CrossRef] [Google Scholar]
- Pearl J, Thomas D, Grist G, Duffy J, Manning P. Hyperoxia for management of acid-base status during deep hypothermia with circulatory arrest. Ann Thorac Surg. 2000;70:751–755. [CrossRef] [Google Scholar]
- Alex J, Laden G, Cale A, et al. Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: A prospective randomized double blind trial. J Thorac Cardiovasc Surg. 2005;130:1623–1629. [CrossRef] [Google Scholar]
- Zhen R, Wenxiang D, Zhaokang S, et al. Mechanisms of brain injury with deep hypothermic circulatory arrest and protective effects of coenzyme Q10. J Thorac Cardiovasc Surg. 1994;108:126–133. [CrossRef] [Google Scholar]
- Vereczki V, Martin E, Rosenthal R, et al. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal cell death. J Cereb Blood Flow Metab. 2006;26:821–835. [CrossRef] [PubMed] [Google Scholar]
- Nollert G, Nagashima M, Bucerius J, et al. Oxygenation strategy and neurological damage after deep hypothermic circulatory arrest. II. Hypoxic versus free radical injury. J Thorac Cardiovasc Surg. 1999;117:1172–1179. [CrossRef] [Google Scholar]
- Allen D, Maguire J, Mahdavian M, et al. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg. 1997;132:991–996. [CrossRef] [PubMed] [Google Scholar]
- Qadan M, Battista C, Gardner S, et al. Oxygen and surgical site infection. Anesthesiology. 2010;113:369–377. [CrossRef] [PubMed] [Google Scholar]
- Greif R, Akca O, Horn E, Kurz A, Sessler D. Supplemental perioperative oxygen to reduce the incidence surgical wound infection. N Engl J Med. 2000;342:161–167. [CrossRef] [PubMed] [Google Scholar]
- Belda F, Aguilera L, Garcia de la Asuncion J, et al. Supplemental perioperative oxygen and the risk of surgical wound infection. A randomised controlled trial. JAMA. 2005;294:2035–2042. [CrossRef] [PubMed] [Google Scholar]
- Bickel A, Gurevits M, Vamos R, Ivry S, Eitan A. Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis. Arch Surg. 2011;146:464–470. [CrossRef] [PubMed] [Google Scholar]
- Mayzler O, Weksler N, Domchik S, et al. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005;71:21–25. [Google Scholar]
- Gardella C, Goltra L, Laschansky E, et al. High concentration supplemental perioperative oxygen to reduce the incidence of postcesarian surgical site infection. Obstet Gynecol. 2008;112:545–552. [CrossRef] [PubMed] [Google Scholar]
- Pryor K, Fahey T, Lien C, Goldstein P. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: A randomised controlled trial. JAMA. 2004;291:79–87. [CrossRef] [PubMed] [Google Scholar]
- Meyhoff C, Wetterslev J, Jorgensen L, et al. ; for the PROXI Trial Group. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery. The PROXI randomized clinical trial. JAMA. 2009;302:1543–1550. [CrossRef] [PubMed] [Google Scholar]
- Myles P, Leslie K, Chan M, et al. ; ENIGMA Trial Group. Avoidance of nitrous oxide for patients undergoing major surgery. A randomized controlled trial. Anesthesiology. 2007;107:221–231. [CrossRef] [PubMed] [Google Scholar]
- Togioka B, Galvagno S, Sumida S, et al. The role of perioperative oxygen therapy in reducing surgical site infection: A meta-analysis. Anesth Analg. 2012;114:334–342. [CrossRef] [PubMed] [Google Scholar]
- Bakri M, Nagem H, Sessler D, et al. Transdermal oxygen does not improve sternal wound oxygenation in patients recovering from cardiac surgery. Anesth Analg. 2008;106:1619–1626. [CrossRef] [PubMed] [Google Scholar]
- Greif R, Lacyni S, Rapf B, Hickle R, Sessler D. Supplemental oxygen reduces the incidence of postoperative nausea and vomiting. Anesthesiology. 1999;91:1246–1252. [CrossRef] [PubMed] [Google Scholar]
- Goll V, Akca O, Grief R, et al. Ondansetron is no more effective than supplemental intraoperative oxygen for prevention of postoperative nausea and vomiting. Anesth Analg. 2001;92:284–287. [Google Scholar]
- Treschan T, Zimmer C, Nass C, et al. Inspired oxygen fraction of 0.8 does not attenuate postoperative nausea and vomiting after strabismus surgery. Anesthesiology. 2005;1034:6–10. [CrossRef] [PubMed] [Google Scholar]
- Joris J, Poth N, Djamadar A, et al. Supplemental oxygen does not reduce postoperative nausea and vomiting after thyroidectomy. Br J Anaesth. 2003;91:857–861. [CrossRef] [Google Scholar]
- Orhan-Sungur M, Kranke P, Apfel C. Does supplemental oxygen reduce postoperative nausea and vomiting? A meta-analysis of randomised trials. Anesth Analg. 2008;106:1733–1738. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.