Free Access
J Extra Corpor Technol
Volume 46, Number 1, March 2014
Page(s) 15 - 22
Published online 15 March 2014
  1. Savage GH. Insanity following the use of anaesthetics in operations. BMJ. 1887;3:1199–1200. [CrossRef] [Google Scholar]
  2. Bedford P. Adverse cerebral effects of anaesthesia on old people. Lancet. 1955;269:259–263. [CrossRef] [Google Scholar]
  3. Simpson BR, Williams M, Scott JF, Smith AC. The effects of anesthesia and elective surgery on old people. Lancet. 1961;2:887–893. [PubMed] [Google Scholar]
  4. Shaw PJ, Bates D, Cartlidge NE, et al. Neurological complications of coronary artery bypass graft surgery: Six month follow-up study. Br Med J (Clin Res Ed). 1986;293:165–167. [CrossRef] [PubMed] [Google Scholar]
  5. Murkin JM, Newman SP, Stump DA, Blumenthal JA. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg. 1995;59:1289–1295. [CrossRef] [Google Scholar]
  6. Rasmussen LS, Larsen K, Houx P, et al. The assessment of postoperative cognitive function. Acta Anaesthesiol Scand. 2001;45:275–289. [CrossRef] [Google Scholar]
  7. Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108:18–30. [CrossRef] [PubMed] [Google Scholar]
  8. Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg. 2011;112:1179–1185. [CrossRef] [PubMed] [Google Scholar]
  9. Van Dijk D, Jansen EW, Hijman R, et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: A randomized trial. JAMA. 2002;287:1405–1412. [CrossRef] [PubMed] [Google Scholar]
  10. Sun JH, Wu XY, Wang WJ, Jin LL. Cognitive dysfunction after off-pump versus on-pump coronary artery bypass surgery: A meta-analysis. J Int Med Res. 2012;40:852–858. [CrossRef] [PubMed] [Google Scholar]
  11. Kennedy ED, Choy KC, Alston RP, et al. Cognitive outcome after on- and off-pump coronary artery bypass grafting surgery: A systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2013;27:253–265. [CrossRef] [Google Scholar]
  12. Kruis RW, Vlasveld FA, Van Dijk D. The (un)importance of cerebral microemboli. Semin Cardiothorac Vasc Anesth. 2010;14:111–118. [CrossRef] [PubMed] [Google Scholar]
  13. Martin KK, Wigginton JB, Babikian VL, Pochay VE, Crittenden MD, Rudolph JL. Intraoperative cerebral high-intensity transient signals and postoperative cognitive function: A systematic review. Am J Surg. 2009;197:55–63. [CrossRef] [Google Scholar]
  14. Rodriguez RA, Cornel G, Weerasena NA, Pham B, Splinter WM. Cerebral emboli detected by transcranial Doppler during cardiopulmonary bypass are not correlated with postoperative cognitive deficits. Stroke. 2010;41:2229–2235. [CrossRef] [PubMed] [Google Scholar]
  15. Groom RC, Quinn RD, Lennon P, et al. Microemboli from cardiopulmonary bypass are associated with a serum marker of brain injury. J Extra Corpor Technol. 2010;42:40–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. Leiendecker J, Höcker J, Meybohm P, Fudickar A, Bein B. Postoperative neurocognitive function and microembolus detection in patients undergoing neck dissection: A pilot study. Eur J Anaesthesiol. 2010;27:417–424. [CrossRef] [PubMed] [Google Scholar]
  17. Silbert BS, Scott DA, Evered LA, et al. A comparison of the effect of high- and low-dose fentanyl on the incidence of postoperative cognitive dysfunction after coronary artery bypass surgery in the elderly. Anesthesiology. 2006;104:1137–1145. [CrossRef] [PubMed] [Google Scholar]
  18. Phillips-Bute B, Mathew JP, Blumenthal JA, et al. Association of neurocognitive function and quality of life 1 year after coronary artery bypass graft (CABG) surgery. Psychosom Med. 2006;68:369–375. [CrossRef] [PubMed] [Google Scholar]
  19. Tully PJ, Baune BT, Baker RA. Cognitive impairment before and six months after cardiac surgery increase mortality risk at median 11 year follow-up: A cohort study. Int J Cardiol. 2013;168:2796–2802. [CrossRef] [Google Scholar]
  20. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402. [CrossRef] [PubMed] [Google Scholar]
  21. Fontes MT, Swift RC, Phillips-Bute B, et al. Predictors of cognitive recovery after cardiac surgery. Anesth Analg. 2013;116:435–442. [CrossRef] [PubMed] [Google Scholar]
  22. Evered LA, Silbert BS, Scott DA, Maruff P, Ames D, Choong PF. Preexisting cognitive impairment and mild cognitive impairment in subjects presenting for total hip joint replacement. Anesthesiology. 2011;114:1297–1304. [CrossRef] [PubMed] [Google Scholar]
  23. Gottesman RF, Grega MA, Bailey MM, et al. Delirium after coronary artery bypass graft surgery and late mortality. Ann Neurol. 2010;67:338–344. [Google Scholar]
  24. Rudolph JL, Inouye SK, Jones RN, et al. Delirium: An independent predictor of functional decline after cardiac surgery. J Am Geriatr Soc. 2010;58:643–649. [CrossRef] [Google Scholar]
  25. Lin Y, Chen J, Wang Z. Meta-analysis of factors which influence delirium following cardiac surgery. J Card Surg. 2012;27:481–492. [CrossRef] [Google Scholar]
  26. Jacobi J, Fraser GL, Coursin DB, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30:119–141. [CrossRef] [PubMed] [Google Scholar]
  27. Inouye SK, Rushing JT, Foreman MD, Palmer RM, Pompei P. Does delirium contribute to poor hospital outcomes? A three-site epidemiologic study. J Gen Intern Med. 1998;13:234–242. [CrossRef] [PubMed] [Google Scholar]
  28. Leslie DL, Zhang Y, Holford TR, Bogardus ST, Leo-Summers LS, Inouye SK. Premature death associated with delirium at 1-year follow-up. Arch Intern Med. 2005;165:1657–1662. [CrossRef] [PubMed] [Google Scholar]
  29. Meagher DJ, Leonard M, Donnelly S, Conroy M, Adamis D, Trzepacs PT. A longitudinal study of motor subtypes in delirium: Frequency and stability during episodes. J Psychosom Res. 2012;72:236–241. [CrossRef] [Google Scholar]
  30. Rudolph JL, Marcantonio ER. Review articles: Postoperative delirium: Acute change with long-term implications. Anesth Analg. 2011;112:1202–1211. [CrossRef] [PubMed] [Google Scholar]
  31. nouye SK. Delirium in hospitalized older patients: Recognition and risk factors. J Geriatr Psychiatry Neurol. 1998;11:118–125. [CrossRef] [PubMed] [Google Scholar]
  32. Simone MJ, Tan ZS. The role of inflammation in the pathogenesis of delirium and dementia in older adults: A review. CNS Neurosci Ther. 2011;17:506–513. [CrossRef] [Google Scholar]
  33. MacLullich AM, Beaglehole A, Hall RJ, Meagher DJ. Delirium and long-term cognitive impairment. Int Rev Psychiatry. 2009;21:30–42. [CrossRef] [PubMed] [Google Scholar]
  34. Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology. 2010;75:889–897. [CrossRef] [PubMed] [Google Scholar]
  35. Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology. 2010;75:230–238. [CrossRef] [PubMed] [Google Scholar]
  36. Australian Institute of Health and Welfare. Australia’s Health 2010. Australia’s Health Series No. 12 ed. Canberra, Australia: Australian Government; 2010. [Google Scholar]
  37. Scott DA, Silbert BS, Evered LA. Anesthesia and Alzheimer’s disease: Time to wake up! Int Psychogeriatr. 2013;25:341–344. [CrossRef] [PubMed] [Google Scholar]
  38. Jack CRJr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:257–262. [CrossRef] [PubMed] [Google Scholar]
  39. Bissette G. Mini-Forum: Roles of amyloid-beta and tau phosphorylation in neuronal repair and protection. J Alzheimers Dis. 2009;18:369–370. [CrossRef] [Google Scholar]
  40. Bilotta F, Doronzio A, Stazi E, et al. Postoperative cognitive dysfunction: Toward the Alzheimer’s disease pathomechanism hypothesis. J Alzheimers Dis. 2010;22(Suppl 3):81–89. [Google Scholar]
  41. Sprung J, Jankowski CJ, Roberts RO, et al. Anesthesia and incident dementia: A population-based, nested, case–control study. Mayo Clin Proc. 2013;88:552–561. [CrossRef] [Google Scholar]
  42. Avidan MS, Evers AS. Review of clinical evidence for persistent cognitive decline or incident dementia attributable to surgery or general anesthesia. J Alzheimers Dis. 2011;24:201–216. [CrossRef] [Google Scholar]
  43. Fodale V, Santamaria LB, Schifilliti D, Mandal PK. Anaesthetics and postoperative cognitive dysfunction: A pathological mechanism mimicking Alzheimer’s disease. Anaesthesia. 2010;65:388–395. [CrossRef] [PubMed] [Google Scholar]
  44. van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia. 2012;67:280–293. [CrossRef] [PubMed] [Google Scholar]
  45. Hindman BJ. Emboli, inflammation, and CNS impairment: An overview. Heart Surg Forum. 2002;5:249–253. [Google Scholar]
  46. Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 2003;75:S715–S720. [CrossRef] [Google Scholar]
  47. Grocott HP, White WD, Morris RW, et al. Genetic polymorphisms and the risk of stroke after cardiac surgery. Stroke. 2005;36:1854–1858. [CrossRef] [PubMed] [Google Scholar]
  48. Silbert BS, Evered LA, Scott DA, Cowie TF. The apolipoprotein E epsilon4 allele is not associated with cognitive dysfunction in cardiac surgery. Ann Thorac Surg. 2008;86:841–847. [CrossRef] [Google Scholar]
  49. Bryson GL, Wyand A, Wozny D, Rees L, Taljaard M, Nathan H. A prospective cohort study evaluating associations among delirium, postoperative cognitive dysfunction, and apolipoprotein E genotype following open aortic repair. Can J Anaesth. 2011;58:246–255. [CrossRef] [PubMed] [Google Scholar]
  50. Girard TD, Ware LB, Bernard GR, et al. Associations of markers of inflammation and coagulation with delirium during critical illness. Intensive Care Med. 2012;38:1965–1973. [CrossRef] [PubMed] [Google Scholar]
  51. Inouye SK, Ferrucci L. Elucidating the pathophysiology of delirium and the interrelationship of delirium and dementia. J Gerontol A Biol Sci Med Sci. 2006;61:1277–1280. [CrossRef] [PubMed] [Google Scholar]
  52. Whitlock RP, Chan S, Devereaux PJ, et al. Clinical benefit of steroid use in patients undergoing cardiopulmonary bypass: A meta-analysis of randomized trials. Eur Heart J. 2008;29:2592–2600. [CrossRef] [PubMed] [Google Scholar]
  53. Dieleman JM, Nierich AP, Rosseel PM, et al. Intraoperative high-dose dexamethasone for cardiac surgery: A randomized controlled trial. JAMA. 2012;308:1761–1767. [CrossRef] [PubMed] [Google Scholar]
  54. Kamer AR, Galoyan SM, Haile M, et al. Meloxicam improves object recognition memory and modulates glial activation after splenectomy in mice. Eur J Anaesthesiol. 2012;29:332–337. [CrossRef] [PubMed] [Google Scholar]
  55. Hudetz JA, Pagel PS. Neuroprotection by ketamine: A review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24:131–142. [CrossRef] [Google Scholar]
  56. Himmelseher S, Pfenninger E, Georgieff M. The effects of ketamineisomers on neuronal injury and regeneration in rat hippocampal neurons. Anesth Analg. 1996;83:505–512. [CrossRef] [PubMed] [Google Scholar]
  57. Kawasaki T, Ogata M, Kawasaki C, Ogata J, Inoue Y, Shigematsu A. Ketamine suppresses proinflammatory cytokine production in human whole blood in vitro. Anesth Analg. 1999;89:665–669. [CrossRef] [PubMed] [Google Scholar]
  58. Shapira Y, Artru AA, Lam AM. Ketamine decreases cerebral infarct volume and improves neurological outcome following experimental head trauma in rats. J Neurosurg Anesthesiol. 1992;4:231–240. [CrossRef] [PubMed] [Google Scholar]
  59. Beilin B, Rusabrov Y, Shapira Y, et al. Low-dose ketamine affects immune responses in humans during the early postoperative period. Br J Anaesth. 2007;99:522–527. [CrossRef] [Google Scholar]
  60. Ho JD, Smith SW, Nystrom PC, et al. Successful management of excited delirium syndrome with prehospital ketamine: Two case examples. Prehosp Emerg Care. 2013;17:274–279. [CrossRef] [PubMed] [Google Scholar]
  61. Hudetz JA, Patterson KM, Igbal Z, et al. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23:651–657. [CrossRef] [Google Scholar]
  62. Dixon B, Smith R, Campbell DJ, et al. The effect of etanercept on lung leukocyte margination and fibrin deposition after cardiac surgery. Am J Respir Crit Care Med. 2013;188:751–754. [Google Scholar]
  63. Popp SS, Lei B, Kelemen E, Fenton AA, Cottrell JE, Kass IS. Intravenous antiarrhythmic doses of lidocaine increase the survival rate of CA1 neurons and improve cognitive outcome after transient global cerebral ischemia in rats. Neuroscience. 2011;192:537–549. [CrossRef] [PubMed] [Google Scholar]
  64. Mitchell SJ, Merry AF. Lignocaine: Neuro-protective or wishful thinking? J Extra Corpor Technol. 2009;41:37–42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  65. Mathew JP, Mackensen GB, Phillips-Bute B, et al. Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke. 2009;40:880–887. [CrossRef] [PubMed] [Google Scholar]
  66. Krenk L, Rasmussen LS, Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction. Acta Anaesthesiol Scand. 2010;54:951–956. [CrossRef] [Google Scholar]
  67. Galvan V, Bredesen DE. Neurogenesis in the adult brain: Implications for Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2007;6:303–310. [CrossRef] [PubMed] [Google Scholar]
  68. Rodríguez JJ, Noristani HN, Olabarria M, et al. Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2011;8:707–717. [CrossRef] [Google Scholar]
  69. Jeong YH, Kim JM, Yoo J, Lee SH, Kim HS, Suh YH. Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. J Neurochem. 2011;119:1282–1293. [CrossRef] [Google Scholar]
  70. Hendrix SB. Measuring clinical progression in MCI and pre-MCI populations: Enrichment and optimizing clinical outcomes over time. Alzheimers Res Ther. 2012;4:24. [CrossRef] [Google Scholar]
  71. Puskas F, Grocott HP, White WD, Mathew JP, Newman MF, Bar-Yosef S. Intraoperative hyperglycemia and cognitive decline after CABG. Ann Thorac Surg. 2007;84:1467–1473. [CrossRef] [Google Scholar]
  72. Grocott HP, Mackensen GB, Grigore AM, et al. Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery. Stroke. 2002;33:537–541. [CrossRef] [PubMed] [Google Scholar]
  73. Grigore AM, Grocott HP, Matthew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg. 2002;94:4–10, table of contents. [CrossRef] [PubMed] [Google Scholar]
  74. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351:857–861. [CrossRef] [PubMed] [Google Scholar]
  75. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth Analg. 2007;104:51–58. [CrossRef] [PubMed] [Google Scholar]
  76. Tang L, Kazan R, Taddei R, Zaouter C, Cyr S, Hemmerling TM. Reduced cerebral oxygen saturation during thoracic surgery predicts early postoperative cognitive dysfunction. Br J Anaesth. 2012;108:623–629. [CrossRef] [Google Scholar]
  77. Steinmetz J, Funder KS, Dahl BT, Rasmussen LS. Depth of anaesthesia and post-operative cognitive dysfunction. Acta Anaesthesiol Scand. 2010;54:162–168. [CrossRef] [Google Scholar]
  78. Rubens FD, Boodhwani M, Mesana T, et al. The cardiotomy trial: A randomized, double-blind study to assess the effect of processing of shed blood during cardiopulmonary bypass on transfusion and neurocognitive function. Circulation. 2007;116:I89–I97. [CrossRef] [PubMed] [Google Scholar]
  79. van Dijk D, Kalkman CJ. Why are cerebral microemboli not associated with cognitive decline? Anesth Analg. 2009;109:1006–1008. [CrossRef] [PubMed] [Google Scholar]
  80. Liu YH, Wang DX, Li LH, et al. The effects of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive dysfunction after coronary artery bypass graft surgery. Anesth Analg. 2009;109:1013–1022. [CrossRef] [PubMed] [Google Scholar]
  81. Zanatta P, Forti A, Minniti G, et al. Brain emboli distribution and differentiation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2013;27:865–875. [CrossRef] [Google Scholar]
  82. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393–1399. [CrossRef] [PubMed] [Google Scholar]
  83. Scott DA, Silbert BS, Doyle TJ, et al. Centrifugal versus roller head pumps for cardiopulmonary bypass: Effect on early neuropsychologic outcomes after coronary artery surgery. J Cardiothorac Vasc Anesth. 2002;16:715–722. [CrossRef] [Google Scholar]
  84. Baufreton C, Allain P, Chevailler A, et al. Brain injury and neuropsychological outcome after coronary artery surgery are affected by complement activation. Ann Thorac Surg. 2005;79:1597–605. [CrossRef] [Google Scholar]
  85. Mongero LB, Beck JR, Manspeizer HE, et al. Cardiac surgical patients exposed to heparin-bonded circuits develop less postoperative cerebral dysfunction than patients exposed to non-heparinbonded circuits. Perfusion. 2001;16:107–111. [CrossRef] [PubMed] [Google Scholar]
  86. Heyer EJ, Lee KS, Manspeizer HE, et al. Heparin-bonded cardiopulmonary bypass circuits reduce cognitive dysfunction. J Cardiothorac Vasc Anesth. 2002;16:37–42. [CrossRef] [Google Scholar]
  87. Harling L, Warren OJ, Martin A, et al. Do miniaturized extracorporeal circuits confer significant clinical benefit without compromising safety? A meta-analysis of randomized controlled trials. ASAIO J. 2011;57:141–151. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.