Free Access
Review
Issue |
J Extra Corpor Technol
Volume 48, Number 4, December 2016
|
|
---|---|---|
Page(s) | 162 - 167 | |
DOI | https://doi.org/10.1051/ject/201648162 | |
Published online | 15 December 2016 |
- Elsharkawy H. A., Li L., Esa W. A., et al. Outcome in patients who require venoarterial extracorporeal membrane oxygenation support after cardiac surgery. J Cardiothorac Vasc Anesth. 2010;24:946–51. [CrossRef] [Google Scholar]
- Rastan A. J., Dege A., Mohr M., et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J Thorac Cardiovasc Surg. 2010;139(2):302–11, 311.e301. [CrossRef] [PubMed] [Google Scholar]
- Abrams D., Combes A., Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol. 2014;63(25 Pt A):2769–78. [CrossRef] [PubMed] [Google Scholar]
- Beiras-Fernandez A., Deutsch M. A., Kainzinger S., et al. Extracorporeal membrane oxygenation in 108 patients with low cardiac output: A single-center experience. Int J Artif Organs. 2011;34:365–73. [CrossRef] [PubMed] [Google Scholar]
- Rastan A. J., Lachmann N., Walther T., et al. Autopsy findings in patients on postcardiotomy extracorporeal membrane oxygenation (ECMO). Int J Artif Organs. 2006;29:1121–31. [CrossRef] [PubMed] [Google Scholar]
- Moubarak G., Weiss N., Leprince P., et al. Massive intraventricular thrombus complicating extracorporeal membrane oxygenation support. Can J Cardiol. 2008;24:e1. [CrossRef] [Google Scholar]
- Weis F., Beiras-Fernandez A., Bruegger D., et al. Huge intracardiac thrombosis in a patient on veno-arterial extracorporeal membrane oxygenation support. Interact Cardiovasc Thorac Surg. 2009;8:247–9. [Google Scholar]
- Hajj-Chahine J., Tomasi J., Lanquetot H., et al. Ascending aortic thrombosis in a patient on extra-corporeal membrane oxygenation. Eur J Cardiothorac Surg. 2010;37:953. [CrossRef] [Google Scholar]
- Leontiadis E., Koertke H., Bairaktaris A., et al. Thrombosis of the ascending aorta during mechanical circulatory support in a patient with cardiogenic shock. Interact Cardiovasc Thorac Surg. 2010;11:510–1. [CrossRef] [PubMed] [Google Scholar]
- Aissaoui N., Hakim-Meibodi K., Morshuis M., et al. Recurrent thrombosis after mechanical circulatory support. Interact Cardiovasc Thorac Surg. 2012;14:668–9. [CrossRef] [PubMed] [Google Scholar]
- Gaide-Chevronnay L., Durand M., Rossi-Blancher M., et al. Cardiac thrombosis in a patient during extracorporeal life support. J Cardiothorac Vasc Anesth. 2012;26:664–5. [CrossRef] [Google Scholar]
- Gaide-Chevronnay L., Durand M., Rossi-Blancher M., et al. Cardiac thrombosis in a patient during extracorporeal life support. J Cardiothorac Vasc Anesth. 2012;26:664–5. [CrossRef] [Google Scholar]
- Ramjee V., Shreenivas S., Rame J. E., et al. Complete spontaneous left heart and aortic thromboses on extracorporeal membrane oxygenation support. Echocardiography. 2013;30:E342–3. [CrossRef] [PubMed] [Google Scholar]
- Madershahian N., Weber C., Scherner M., et al. Thrombosis of the aortic root and ascending aorta during extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:432. [CrossRef] [PubMed] [Google Scholar]
- Douflé G., Facchin F., Anwar S., et al. Severe hypercoagulable state on veno-arterial extracorporeal membrane oxygenation. Intensive Care Med. 2016;42(3):443. [CrossRef] [PubMed] [Google Scholar]
- Sangalli F., Greco G., Galbiati L., et al. Regional thrombolysis with tenecteplase during extracorporeal membrane oxygenation: A new approach for left ventricular thrombosis. J Card Surg. 2015;30:541–3. [CrossRef] [Google Scholar]
- Makdisi G., Hashmi Z. A., Wozniak T. C., et al. Left ventricular thrombus associated with arteriovenous extra corporeal membrane oxygenation. J Thorac Dis. 2015;7:E552. [Google Scholar]
- Boisclair M. D., Lane D. A., Philippou H., et al. Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood. 1993;82:3350–7. [CrossRef] [PubMed] [Google Scholar]
- Edmunds L. H., Colman R. W. Thrombin during cardiopulmonary bypass. Ann Thorac Surg. 2006;82:2315–22. [CrossRef] [Google Scholar]
- MacLaren G., Combes A., Bartlett R. H. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: Life support in the new era. Intensive Care Med. 2012;38:210–20. [CrossRef] [PubMed] [Google Scholar]
- Protti A., L'Acqua C., Panigada M. The delicate balance between pro- (risk of thrombosis) and anti- (risk of bleeding) coagulation during extracorporeal membrane oxygenation. Ann Transl Med. 2016;4:139. [CrossRef] [Google Scholar]
- Sievert A. N., Shackelford A. G., McCall M. M. Trends and emerging technologies in extracorporeal life support: Results of the 2006 ECLS survey. J Extra Corpor Technol. 2009;41:73–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Wendel H. P., Ziemer G. Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur J Cardiothorac Surg. 1999;16:342–50. [CrossRef] [Google Scholar]
- Lamarche Y., Chow B., Bédard A., et al. Thromboembolic events in patients on extracorporeal membrane oxygenation without anticoagulation. Innovations. Innovations (Phila). 2010;5:424–9. [CrossRef] [PubMed] [Google Scholar]
- Magovern G. J., Magovern J. A., Benckart D. H., et al. Extracorporeal membrane oxygenation versus the biopump: Preliminary results in patients with postcardiotomy cardiogenic shock. Ann Thorac Surg. 1994;57:1462–71. [CrossRef] [Google Scholar]
- Muehrcke D. D., McCarthy P. M., Stewart R. W., et al. Complications of extracorporeal life support systems using heparin-bound surfaces. The risk of intracardiac clot formation. J Thorac Cardiovasc Surg. 1995;110:843–51. [CrossRef] [PubMed] [Google Scholar]
- Ranucci M., Ditta A., Boncilli A., et al. Determinants of antithrombin consumption in cardiac operations requiring cardiopulmonary bypass. Perfusion. 2004;19:47–52. [CrossRef] [PubMed] [Google Scholar]
- Di Minno M. N., Dentali F., Lupoli R., et al. Mild antithrombin deficiency and risk of recurrent venous thromboembolism: A prospective cohort study. Circulation. 2014;129:497–503. [CrossRef] [PubMed] [Google Scholar]
- Despotis G. J., Levine V., Joist J. H., et al. Antithrombin III during cardiac surgery: Effect on response of activated clotting time to heparin and relationship to markers of hemostatic activation. Anesth Analg. 1997;85:498–506. [CrossRef] [PubMed] [Google Scholar]
- Lehman C., Rettmann J., Wilson L., Markewitz B. Comparative performance of three anti-factor Xa heparin assays in patients in a medical intensive care unit receiving intravenous, unfractionated heparin. Am J Clin Pathol. 2006;126:416–21. [CrossRef] [PubMed] [Google Scholar]
- Irby K., Swearingen C., Byrnes J., et al. Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for extracorporeal membrane oxygenation circuit/membrane oxygenator change: A retrospective pediatric study. Pediatr Crit Care Med. 2014;15:e175–82. [CrossRef] [PubMed] [Google Scholar]
- O'Meara LC, Alten J. A., Goldberg K. G., et al. Anti-Xa directed protocol for anticoagulation management in children supported with extracorporeal membrane oxygenation. ASAIO J. 2015;61:339–44. [CrossRef] [PubMed] [Google Scholar]
- Delewi R., Zijlstra F., Piek J. J. Left ventricular thrombus formation after acute myocardial infarction. Heart. 2012;98:1743–9. [CrossRef] [PubMed] [Google Scholar]
- Hong T. H., Byun J. H., Yoo B. H., et al. Successful left-heart decompression during extracorporeal membrane oxygenation in an adult patient by percutaneous transaortic catheter venting. Korean J Thorac Cardiovasc Surg. 2015;48:210. [CrossRef] [PubMed] [Google Scholar]
- Dixon S. R., Henriques J. P., Mauri L., et al. A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (The PROTECT I Trial): Initial US experience. JACC Cardiovasc Interv. 2009;2:91–6. [CrossRef] [PubMed] [Google Scholar]
- Takemoto C. M., Streiff M. B., Shermock K. M., et al. Activated partial thromboplastin time and anti-Xa measurements in heparin monitoring. Am J Clin Pathol. 2013;139:450–6. [CrossRef] [PubMed] [Google Scholar]
- Liveris A., Bello R. A., Friedmann P., et al. Anti-factor Xa assay is a superior correlate of heparin dose than activated partial thromboplastin time or activated clotting time in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2014;15:e72–9. [CrossRef] [PubMed] [Google Scholar]
- Ranucci M., Ballotta A., Kandil H., et al. Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Crit Care. 2011;15:R275. [CrossRef] [PubMed] [Google Scholar]
- Pieri M., Agracheva N., Bonaveglio E., et al. Bivalirudin versus heparin as an anticoagulant during extracorporeal membrane oxygenation: A case-control study. J Cardiothorac Vasc Anesth. 2013;27:30–4. [CrossRef] [Google Scholar]
- Beiderlinden M., Treschan T., Görlinger K., et al. Argatroban in extracorporeal membrane oxygenation. Artif Organs. 2007;31:461–5. [CrossRef] [PubMed] [Google Scholar]
- Ogawa S., Richardson J. E., Sakai T., et al. High mortality associated with intracardiac and intrapulmonary thromboses after cardiopulmonary bypass. J Anesth. 2012;26:9–19. [CrossRef] [PubMed] [Google Scholar]
- Zwischenberger J. B., Nguyen T. T., Upp J. R., et al. Complications of neonatal extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 1994;107:838–49. [CrossRef] [Google Scholar]
- Ford M. A., Gauvreau K., McMullan D. M., et al. Factors associated with mortality in neonates requiring extracorporeal membrane oxygenation for cardiac indications: Analysis of the extracorporeal life support organization registry data. Pediatr Crit Care Med. 2016;17:860–70. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.