Free Access
Review
Issue |
J Extra Corpor Technol
Volume 49, Number 1, March 2017
|
|
---|---|---|
Page(s) | 7 - 15 | |
DOI | https://doi.org/10.1051/ject/201749007 | |
Published online | 15 March 2017 |
- O'Connor E., Fraser J. F. The interpretation of perioperative lactate abnormalities in patients undergoing cardiac surgery. Anaesth Intensive Care. 2012;40:598–603. [CrossRef] [PubMed] [Google Scholar]
- Ranucci M., De Toffol B., Isgro G., et al. Hyperlactatemia during cardiopulmonary bypass: Determinants and impact on postoperative outcome. Crit Care. 2006;10:R167. [CrossRef] [Google Scholar]
- Gladden L. B. Lactate metabolism: A new paradigm for the third millennium. J Physiol. 2004;558:5–30. [CrossRef] [Google Scholar]
- Brooks G. A. Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc. 2000;32:790–9. [CrossRef] [PubMed] [Google Scholar]
- Chatham J. C. Lactate–the forgotten fuel! J Physiol. 2002;542:333. [CrossRef] [PubMed] [Google Scholar]
- Kemppainen J., Fujimoto T., Kalliokoski K. K., et al. Myocardial and skeletal muscle glucose uptake during exercise in humans. J Physiol. 2002;542:403–12. [CrossRef] [PubMed] [Google Scholar]
- Stanley W. C. Myocardial lactate metabolism during exercise. Med Sci Sports Exerc. 1991;23:920–4. [Google Scholar]
- Ide K., Secher N. H. Cerebral blood flow and metabolism during exercise. Prog Neurobiol. 2000;61:397–414. [CrossRef] [Google Scholar]
- Daniel A. M., Shizgal H. M., MacLean L. D. The anatomic and metabolic source of lactate in shock. Surg Gynecol Obstet. 1978;147:697–700. [Google Scholar]
- Hotchkiss R. S., Karl I. E. Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA. 1992;267:1503–10. [CrossRef] [PubMed] [Google Scholar]
- Boekstegers P., Weidenhofer S., Kapsner T., Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22:640–50. [CrossRef] [PubMed] [Google Scholar]
- Gore D. C., Jahoor F., Hibbert J. M., DeMaria E. J. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg. 1996;224:97–102. [CrossRef] [PubMed] [Google Scholar]
- Stacpoole P. W., Harman E. M., Curry S. H., Baumgartner T. G., Misbin R. I. Treatment of lactic acidosis with dichloroacetate. N Engl J Med. 1983;309:390–6. [CrossRef] [PubMed] [Google Scholar]
- Raper R. F., Cameron G., Walker D., Bowey C. J. Type B lactic acidosis following cardiopulmonary bypass. Crit Care Med. 1997;25:46–51. [CrossRef] [PubMed] [Google Scholar]
- Hosein R. B., Morris K. P., Brawn W. J., Barron D. J. Use of tissue microdialysis to investigate hyperlactataemia following paediatric cardiac surgery. Interact Cardiovasc Thorac Surg. 2008;7:384–8. [CrossRef] [PubMed] [Google Scholar]
- Maillet J. M., Le Besnerais P., Cantoni M., et al. Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery. Chest. 2003;123:1361–6. [CrossRef] [Google Scholar]
- James J. H., Luchette F. A., McCarter F. D., Fischer J. E. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–8. [CrossRef] [Google Scholar]
- Levy B., Sadoune L. O., Gelot A. M., et al. Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med. 2000;28:114–9. [CrossRef] [PubMed] [Google Scholar]
- Suistomaa M., Ruokonen E., Kari A., Takala J. Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock. 2000;14:8–12. [CrossRef] [PubMed] [Google Scholar]
- Levy B. Lactate and shock state: The metabolic view. Curr Opin Crit Care. 2006;12:315–21. [CrossRef] [PubMed] [Google Scholar]
- Totaro R. J., Raper R. F. Epinephrine-induced lactic acidosis following cardiopulmonary bypass. Crit Care Med. 1997;25:1693–9. [CrossRef] [PubMed] [Google Scholar]
- Levy B., Perez P., Perny J., Thivilier C., Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39:450–5. [CrossRef] [PubMed] [Google Scholar]
- Di Giantomasso D., Bellomo R., May C. N. The haemodynamic and metabolic effects of epinephrine in experimental hyperdynamic septic shock. Intensive Care Med. 2005;31:454–62. [CrossRef] [PubMed] [Google Scholar]
- Day N. P., Phu N. H., Bethell D. P., et al. The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet. 1996;348:219–23. [CrossRef] [PubMed] [Google Scholar]
- Attana P., Lazzeri C., Picariello C., et al. Lactate and lactate clearance in acute cardiac care patients. Eur Heart J Acute Cardiovasc Care. 2012;1:115–21. [CrossRef] [PubMed] [Google Scholar]
- Bellomo R. Bench-to-bedside review: Lactate and the kidney. Crit Care. 2002;6:322–6. [CrossRef] [Google Scholar]
- Levraut J., Ciebiera J. P., Chave S., et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–6. [CrossRef] [PubMed] [Google Scholar]
- Stewart P. A. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–61. [CrossRef] [PubMed] [Google Scholar]
- Worthley L. I. Strong ion difference: A new paradigm or new clothes for the acid-base emperor. Crit Care Resusc. 1999;1:214. [Google Scholar]
- Kaplan L. J., Frangos S. Clinical review: Acid-base abnormalities in the intensive care unit–part II. Crit Care. 2005;9:198–203. [Google Scholar]
- Morgan T. J., Hall J. A. Hyperlactaemia without acidosis: An investigation using an in vitro model. Crit Care Resusc. 1999;1:354–9. [Google Scholar]
- Hilton P. J., Taylor J., Forni L. G., Treacher D. F. Bicarbonate-based haemofiltration in the management of acute renal failure with lactic acidosis. QJM. 1998;91:279–83. [CrossRef] [Google Scholar]
- Rocktaschel J., Morimatsu H., Uchino S., Ronco C., Bellomo R. Impact of continuous veno-venous hemofiltration on acid-base balance. Int J Artif Organs. 2003;26:19–25. [CrossRef] [PubMed] [Google Scholar]
- Levraut J., Ciebiera J. P., Jambou P., et al. Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med. 1997;25:58–62. [CrossRef] [PubMed] [Google Scholar]
- Kanoore Edul V. S., Ince C., Dubin A. What is microcirculatory shock? Curr Opin Crit Care. 2015;21:245–52. [CrossRef] [PubMed] [Google Scholar]
- Ostergaard L., Granfeldt A., Secher N., et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol Scand. 2015;59:1246–59. [CrossRef] [PubMed] [Google Scholar]
- Koning N. J., Atasever B., Vonk A. B., Boer C. Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2014;28:1331–40. [CrossRef] [PubMed] [Google Scholar]
- Hajjar L. A., Almeida J. P., Fukushima J. T., et al. High lactate levels are predictors of major complications after cardiac surgery. J Thorac Cardiovasc Surg. 2013;146:455–60. [CrossRef] [Google Scholar]
- Munoz R., Laussen P. C., Palacio G., et al. Changes in whole blood lactate levels during cardiopulmonary bypass for surgery for congenital cardiac disease: An early indicator of morbidity and mortality. J Thorac Cardiovasc Surg. 2000;119:155–62. [CrossRef] [Google Scholar]
- Cheung P. Y., Chui N., Joffe A. R., et al. Postoperative lactate concentrations predict the outcome of infants aged 6 weeks or less after intracardiac surgery: A cohort follow-up to 18 months. J Thorac Cardiovasc Surg. 2005;130:837–43. [CrossRef] [Google Scholar]
- O'Connor E. D., Fraser J. F. Hyperlactatemia in critical illness and cardiac surgery. Crit Care. 2010;14:421. [CrossRef] [PubMed] [Google Scholar]
- Nichol A. D., Egi M., Pettila V., et al. Relative hyperlactatemia and hospital mortality in critically ill patients: A retrospective multi-centre study. Crit Care. 2010;14:R25. [CrossRef] [PubMed] [Google Scholar]
- Demers P., Elkouri S., Martineau R., Couturier A., Cartier R. Outcome with high blood lactate levels during cardiopulmonary bypass in adult cardiac operation. Ann Thorac Surg. 2000;70:2082–6. [CrossRef] [Google Scholar]
- Ranucci M., Ballotta A., Castelvecchio S., et al. Intensive care unit admission parameters improve the accuracy of operative mortality predictive models in cardiac surgery. PLoS One. 2010;5:e13551. [CrossRef] [Google Scholar]
- Bahlmann L., Misfeld M., Klaus S., et al. Myocardial redox state during coronary artery bypass grafting assessed with microdialysis. Intensive Care Med. 2004;30:889–94. [CrossRef] [PubMed] [Google Scholar]
- Pojar M., Mand'ak J., Cibicek N., et al. Peripheral tissue metabolism during off-pump versus on-pump coronary artery bypass graft surgery: The microdialysis study. Eur J Cardiothorac Surg. 2008;33:899–905. [CrossRef] [Google Scholar]
- Ranucci M., Romitti F., Isgro G., et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80:2213–20. [CrossRef] [Google Scholar]
- Heringlake M., Bahlmann L., Misfeld M., et al. High myocardial lactate concentration is associated with poor myocardial function prior to cardiopulmonary bypass. Minerva Anestesiol. 2005;71:775–83. [Google Scholar]
- Kapoor P., Mandal B., Chowdhury U., Singh S., Kiran U. Changes in myocardial lactate, pyruvate and lactate-pyruvate ratio during cardiopulmonary bypass for elective adult cardiac surgery: Early indicator of morbidity. J Anaesthesiol Clin Pharmacol. 2011;27:225–32. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.