Free Access
Issue
J Extra Corpor Technol
Volume 50, Number 1, March 2018
Page(s) 44 - 52
DOI https://doi.org/10.1051/ject/201850044
Published online 15 March 2018
  1. Kennergren C, Mantovani V, Strindberg L, et al. Myocardial interstitial glucose and lactate before, during, and after cardioplegic heart arrest. Am J Physiol Endocrinol Metab. 2003;284:E788–94. [CrossRef] [PubMed] [Google Scholar]
  2. Chaney MA, Nikolov MP, Blakeman BP, et al. Attempting to maintain normoglycemia during cardiopulmonary bypass with insulin may initiate postoperative hypoglycemia. Anesth Analg. 1999;89:1091–5. [CrossRef] [PubMed] [Google Scholar]
  3. Rosenbaum PR, Rubin DB The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55. [CrossRef] [Google Scholar]
  4. McMurry TL, Hu Y, Blackstone EH, et al. Propensity scores: methods, considerations, and applications. J Thorac Cardiovasc Surg. 2015;150:14–9. [CrossRef] [PubMed] [Google Scholar]
  5. Deb S, Austin PC, Tu JV, et al. A review of propensity-score methods and their use in cardiovascular research. Can J Cardiol. 2016;32:259–5. [CrossRef] [PubMed] [Google Scholar]
  6. Brookhart MA Variable selection for propensity score models. Am J Epidemiol. 2006;163:1149–56. [CrossRef] [PubMed] [Google Scholar]
  7. Austin PC An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46:399–424. [CrossRef] [PubMed] [Google Scholar]
  8. Ho DE, Imai K, King G, et al. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42:1–28. [Google Scholar]
  9. Bates D, Maechler M, Bolker B, et al. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. [CrossRef] [Google Scholar]
  10. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Google Scholar]
  11. Dowle M, Srinivasan A Data.table: extension of ‘data.frame’. R package version 1.10.0. 2016 Available at: https://CRAN.R-project.org/package=data.table. [Google Scholar]
  12. Lüdecke D sjPlot: data visualization for statistics in social science. R package version 2.3.1. 2017 Available at: https://CRAN.R-project.org/package=sjPlot. [Google Scholar]
  13. Yoshida K, Bohn J Tableone: create “table 1” to describe baseline characteristics. R package version 0.7.3. 2015 Available at: https://CRAN.R-project.org/package=tableone. [Google Scholar]
  14. Nadler SB, Hidalgo JU, Block TB Prediction of blood volume in normal human adults. Surgery. 1962;51:224–32. [PubMed] [Google Scholar]
  15. Reddy P, Duggar B, Butterworth J Blood glucose management in the patient undergoing cardiac surgery: a review. World J Cardiol. 2014;6:1209–17. [CrossRef] [PubMed] [Google Scholar]
  16. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. NEJM. 2001;345:1359–67. [CrossRef] [PubMed] [Google Scholar]
  17. Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97. [CrossRef] [PubMed] [Google Scholar]
  18. Lazar HL, McDonnell M, Chipkin SR, et al. The society of thoracic surgeons practice guideline series: blood glucose management during adult cardiac surgery. Ann Thorac Surg. 2009;87:663–9. [CrossRef] [PubMed] [Google Scholar]
  19. Girish G, Agarwal S, Satsangi DK, et al. Glycemic control in cardiac surgery: rationale and current evidence. Ann Card Anesth. 2014;17:222–8. [CrossRef] [PubMed] [Google Scholar]
  20. Ota T, Yerebakan H, Neely RC, et al. Short-term outcomes in adult cardiac surgery in the use of del Nido cardioplegia solution. Perfusion. 2016;31:27–33. [CrossRef] [PubMed] [Google Scholar]
  21. Valooran GJ, Nair SK, Chandrasekharan K, et al. del Nido cardioplegia in adult cardiac surgery-scopes and concerns. Perfusion. 2016;31:6–14. [CrossRef] [PubMed] [Google Scholar]
  22. Sorabella RA, Akashi H, Yerebakan H, et al. Myocardial protection using del Nido cardioplegia solution in adult reoperative aortic valve surgery. J Card Surg. 2014;29:445–9. [CrossRef] [PubMed] [Google Scholar]
  23. Timek T, Willekes C, Hulme O, et al. Propensity matched analysis of del Nido cardioplegia in adult coronary artery bypass grafting: initial experience with 100 consecutive patients. Ann Thorac Surg. 2016;101:2237–42. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.