Free Access
Issue
J Extra Corpor Technol
Volume 52, Number 3, September 2020
Page(s) 182 - 190
DOI https://doi.org/10.1051/ject/202052182
Published online 15 September 2020
  1. Ferraris VA, Brown JR, Despotis GJ, et al. 2011 Update to the society of thoracic surgeons and the society of cardiovascular anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91:944–82. [CrossRef] [PubMed] [Google Scholar]
  2. Ashworth A, Klein AA Cell salvage as part of a blood conservation strategy in anaesthesia. Br J Anaesth. 2010;105:401–16. [CrossRef] [PubMed] [Google Scholar]
  3. Alvarez GG, Fergusson DA, Neilipovitz DT, et al. Cell salvage does not minimize perioperative allogeneic blood transfusion in abdominal vascular surgery: A systematic review. Can J Anesth. 2004;51:425–31. [CrossRef] [PubMed] [Google Scholar]
  4. Bellone M, Pham HP, Shaz BH, et al. Retrospective analysis of community hospital red blood cell recovery procedures: Improved utilization needed for effectiveness. Transfusion. 2015;55;1972–9. [CrossRef] [PubMed] [Google Scholar]
  5. Liang J, Shen J, Chua S, et al. Does intraoperative cell salvage system effectively decrease the need for allogeneic transfusions in scoliotic patients undergoing posterior spinal fusion? A prospective randomized study. Eur Spine J. 2015;24:270–5. [CrossRef] [PubMed] [Google Scholar]
  6. So-Osman C, Nelissen RGHH, Koopman-van Gemert AWMM, et al. Patient blood management in elective total hip- and knee-replacement surgery (part 2): A randomized controlled trial on erythropoietin and blood salvage as transfusion alternatives using a restrictive transfusion policy in erythropoietin-eligible patients. Anesthesiology. 2014;120:852–60. [CrossRef] [PubMed] [Google Scholar]
  7. Gerstein NS, Brierley JK, Windsor J, et al. Antifibrinolytic agents in cardiac and noncardiac surgery: A comprehensive overview and update. J Cardiothorac Vasc Anesth. 2017;31:2183–205. [CrossRef] [PubMed] [Google Scholar]
  8. Endres S, Heinz M, Wilke A Efficacy of tranexamic acid in reducing blood loss in posterior lumbar spine surgery for degenerative spinal stenosis with instability: A retrospective case control study. BMC Surg. 2011;11:29. [CrossRef] [PubMed] [Google Scholar]
  9. Simmons J, Sikorski RA, Pittet JF Tranexamic acid: From trauma to routine perioperative use. Curr Opin Anaesthesiol. 2015;28:191–200. [CrossRef] [PubMed] [Google Scholar]
  10. Li G, Sun TW, Luo G, et al. Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: A meta-analysis. Eur Spine J. 2017;26:140–54. [CrossRef] [PubMed] [Google Scholar]
  11. Qi YM, Wang HP, Li YJ, et al. The efficacy and safety of intravenous tranexamic acid in hip fracture surgery: A systematic review and meta-analysis. J Orthopaed Translation. 2019;19:1–11. [CrossRef] [Google Scholar]
  12. Lecker I, Wang DS, Whissell PD, et al. Tranexamic acid–associated seizures: Causes and treatment. Ann Neurol. 2016;79:18–26. [CrossRef] [PubMed] [Google Scholar]
  13. Levy JH, Koster A, Quinones QJ, et al. Antifibrinolytic therapy and perioperative considerations. Anesthesiology. 2018;128:657–70. [CrossRef] [PubMed] [Google Scholar]
  14. Stammers AH, Tesdahl EA, Mongero LB Does standardizing extracorporeal circuit design for cardiopulmonary bypass affect outcomes? Results from a national perfusion registry. J Extra Corp Tech. 2019;51:210–20. [Google Scholar]
  15. Stammers AH, Tesdahl EA, Mongero LB, et al. The effect of various blood management strategies on intraoperative red blood cell transfusion in first time coronary artery bypass graft patients. Perfusion. 2020;35:217–26. [CrossRef] [Google Scholar]
  16. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019 Available at: https://www.R-project.org/. [Google Scholar]
  17. Dowle M, Srinivasan A data.table: Extension of data.frame. R Package Version 1.12.2; 2019 Available at: https://CRAN.R-project.org/package=data.table. [Google Scholar]
  18. Yoshida K tableone: Create “Table 1” to Describe Baseline Characteristics. R Package Version 0.10.0; 2019 Available at: https://CRAN.R-project.org/package=tableone. [Google Scholar]
  19. Waters JH, Dyga RM, Waters JFR, et al. The volume of returned red blood cells in a large blood salvage program: Where does it all go? Transfusion. 2011;51:2126–32. [CrossRef] [PubMed] [Google Scholar]
  20. Singbartl G, Held AL, Singbartl K Ranking the effectiveness of autologous blood conservation measures through validated modeling of independent clinical data. Transfusion. 2013;53:3060–79. [CrossRef] [PubMed] [Google Scholar]
  21. Salaria ON, Barodka VM, Hogue CW, et al. Impaired red blood cell deformability after transfusion of stored allogeneic blood but not autologous salvaged blood in cardiac surgery patients. Anesth Analg. 2014;118:1179–87. [CrossRef] [PubMed] [Google Scholar]
  22. Frank SM, Sikorski RA, Konig G, et al. Clinical utility of autologous salvaged blood: A review. J Gastrointest Surg. 2020;24:464–72. [CrossRef] [PubMed] [Google Scholar]
  23. Pasternak J, Nikolic D, Milosevic D, et al. An analysis of the influence of intra-operative blood salvage and autologous transfusion on reducing the need for allogeneic transfusion in elective infrarenal abdominal aortic aneurysm repair. Blood Transfus. 2014;12(Suppl 1): S182–6. [PubMed] [Google Scholar]
  24. Kisilevsky A, Gelb AW, Bustillo M, et al. Anaemia and red blood cell transfusion in intracranial neurosurgery: A comprehensive review. Br J Anaesth. 2018;12:988–98. [CrossRef] [PubMed] [Google Scholar]
  25. Lim G, Melnyk V, Facco FL, et al. Cost-effectiveness analysis of intraoperative cell salvage for obstetric hemorrhage. Anesthesiology. 2018;128:328–37. [CrossRef] [PubMed] [Google Scholar]
  26. Dong Z, Han L, Song Y, et al. Hemostatic techniques to reduce blood transfusion after primary TKA: A meta-analysis and systematic review. Arch Orthopaed Trauma Surg. 2019;139:1785–96. [CrossRef] [PubMed] [Google Scholar]
  27. So-Osman C, Nelissen RGHH, Koopman-van Gemert AWMM, et al. Patient blood management in elective total hip- and knee-replacement surgery (part 1). A randomized controlled trial on erythropoietin and blood salvage as transfusion alternatives using a restrictive transfusion policy in erythropoietin-eligible patients. Anesthesiology. 2014;120:839–51. [CrossRef] [PubMed] [Google Scholar]
  28. Michelet D, Julien-Marsollier F, Hilly J, et al. Predictive factors of intraoperative cell salvage during pediatric scoliosis surgery. Cell saver during scoliosis surgery in children. Anaesth Crit Care Pain Med. 2018;37:141–6. [CrossRef] [PubMed] [Google Scholar]
  29. Lei YT, Xie JW, Hueang Q, et al. The antifibrinolytic and anti-inflammatory effects of a high initial-dose tranexamic acid in total knee arthroplasty: A randomized controlled trial. Int Orthop. 2020;44:477–86. [CrossRef] [PubMed] [Google Scholar]
  30. Oremus K, Trkulja SV, Haspl M Influence of tranexamic acid on postoperative autologous blood retransfusion in primary total hip and knee arthroplasty: A randomized controlled trial. Transfusion. 2014;54:31–41. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.