Free Access
Issue
J Extra Corpor Technol
Volume 52, Number 3, September 2020
Page(s) 203 - 211
DOI https://doi.org/10.1051/ject/202052203
Published online 15 September 2020
  1. Gerweck LE, Seetharaman K Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–8. [PubMed] [Google Scholar]
  2. Bartlett RH, Roloff DW, Cornell RG, et al. Extracorporeal circulation in neonatal respiratory failure: A prospective randomized study. Pediatrics. 1985;76:479–87. [CrossRef] [PubMed] [Google Scholar]
  3. O’Rourke PP, Crone RK, Vacanti JP, et al. Extracorporeal membrane oxygenation and conventional medical therapy in neonates with persistent pulmonary hypertension of the newborn: A prospective randomized study. Pediatrics. 1989;84:957–63. [CrossRef] [PubMed] [Google Scholar]
  4. Barbaro RP, Paden ML, Guner YS, et al. Pediatric extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:456–63. [CrossRef] [PubMed] [Google Scholar]
  5. Werho DK, Pasquali SK, Yu S, et al. Hemorrhagic complications in pediatric cardiac patients on extracorporeal membrane oxygenation: An analysis of the extracorporeal life support organization registry. Pediatr Crit Care Med. 2015;16:276–88. [CrossRef] [PubMed] [Google Scholar]
  6. Muszynski JA, Reeder RW, Hall MW, et al. RBC transfusion practice in pediatric extracorporeal membrane oxygenation support. Crit Care Med. 2018;46:e552–9. [CrossRef] [PubMed] [Google Scholar]
  7. Dalton HJ, Reeder R, Garcia-Filion P, et al. Factors associated with bleeding and thrombosis in children receiving extracorporeal membrane oxygenation. Am J Respir Crit Care Med. 2017;196:762–71. [CrossRef] [PubMed] [Google Scholar]
  8. Andrew M, Vegh P, Johnston M, et al. Maturation of the hemostatic system during childhood. Blood. 1992;80:1998–2005. [CrossRef] [PubMed] [Google Scholar]
  9. Mari D, Mannucci PM, Coppola R, et al. Hypercoagulability in centenarians: The paradox of successful aging. Blood. 1995;85:3144–9. [CrossRef] [PubMed] [Google Scholar]
  10. Brown AC, Hannan RT, Timmins LH, et al. Fibrin network changes in neonates after cardiopulmonary bypass. Anesthesiology. 2016;124:1021–31. [CrossRef] [PubMed] [Google Scholar]
  11. Passmore MR, Fung YL, Simonova G, et al. Evidence of altered haemostasis in an ovine model of venovenous extracorporeal membrane oxygenation support. Crit Care. 2017;21:191. [CrossRef] [PubMed] [Google Scholar]
  12. Larsson M, Rayzman V, Nolte MW, et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med. 2014;6:222ra17. [PubMed] [Google Scholar]
  13. Chow E, Woodard JC, Farrar DJ Rapid ventricular pacing in pigs: An experimental model of congestive heart failure. Am J Physiol. 1990;258(5 Pt 2):H1603–5. [PubMed] [Google Scholar]
  14. Schochl H, Solomon C, Schulz A, et al. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17:266–72. [Google Scholar]
  15. Harvey C Cannulation for neonatal and pediatric extracorporeal membrane oxygenation for cardiac support. Front Pediatr. 2018;6:17. [CrossRef] [PubMed] [Google Scholar]
  16. Hannon JP Blood acid-base curve nomogram for immature domestic pigs. Am J Vet Res. 1983;44:2385–90. [PubMed] [Google Scholar]
  17. Oswald E, Stalzer B, Heitz E, et al. Thromboelastometry (ROTEM) in children: Age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth. 2010;105:827–35. [CrossRef] [PubMed] [Google Scholar]
  18. Attard C, van der Straaten T, Karlaftis V, et al. Developmental hemostasis: Age-specific differences in the levels of hemostatic proteins. J Thromb Haemost. 2013;11:1850–4. [CrossRef] [PubMed] [Google Scholar]
  19. Dalton HJ, Garcia-Filion P, Holubkov R, et al. Association of bleeding and thrombosis with outcome in extracorporeal life support. Pediatr Crit Care Med. 2015;16:167–74. [CrossRef] [Google Scholar]
  20. McIlwain RB, Timpa JG, Kurundkar AR, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Invest. 2010;90:128–39. [CrossRef] [PubMed] [Google Scholar]
  21. Kurundkar AR, Killingsworth CR, McIlwain RB, et al. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet. Pediatr Res. 2010;68:128–33. [CrossRef] [Google Scholar]
  22. MohanKumar K, Killingsworth CR, McIlwain RB, et al. Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet. Lab Invest. 2014;94:150–60. [CrossRef] [PubMed] [Google Scholar]
  23. Golej J, Kahlbacher H, Schoffmann G, et al. The immediate haemodynamic response to the initiation of extracorporeal membrane oxygenation in a piglet model of infant hypoxic respiratory failure. Perfusion. 2002;17:421–6. [CrossRef] [PubMed] [Google Scholar]
  24. Itoh H, Ichiba S, Ujike Y, et al. Effect of the pulsatile extracorporeal membrane oxygenation on hemodynamic energy and systemic microcirculation in a piglet model of acute cardiac failure. Artif Organs. 2016;40:19–26. [CrossRef] [PubMed] [Google Scholar]
  25. Batts SG, Mu TS, Uyehara-Lock JH, et al. ECMO maintains cerebral blood flow during endotoxic shock in piglets. ASAIO J. 2016;62:732–6. [CrossRef] [PubMed] [Google Scholar]
  26. Henriquez-Henriquez M, Kattan J, Chang M, et al. Blood component usage during extracorporeal membrane oxygenation: Experience in 98 patients at a Latin-American tertiary hospital. Int J Artif Organs. 2014;37:233–40. [CrossRef] [PubMed] [Google Scholar]
  27. Jackson HT, Oyetunji TA, Thomas A, et al. The impact of leukoreduced red blood cell transfusion on mortality of neonates undergoing extracorporeal membrane oxygenation. J Surg Res. 2014;192:6–11. [CrossRef] [PubMed] [Google Scholar]
  28. Chevuru SC, Sola MC, Theriaque DW, et al. Multicenter analysis of platelet transfusion usage among neonates on extracorporeal membrane oxygenation. Pediatrics. 2002;109:e89. [CrossRef] [PubMed] [Google Scholar]
  29. Faraoni D, Levy JH Algorithm-based management of bleeding in patients with extracorporeal membrane oxygenation. Crit Care. 2013;17:432. [CrossRef] [PubMed] [Google Scholar]
  30. Toulon P, Berruyer M, Brionne-Francois M, et al. Age dependency for coagulation parameters in paediatric populations. Results of a multicentre study aimed at defining the age-specific reference ranges. Thromb Haemost. 2016;116:9–16. [CrossRef] [PubMed] [Google Scholar]
  31. Velik-Salchner C, Schnurer C, Fries D, et al. Normal values for thrombelastography (ROTEM) and selected coagulation parameters in porcine blood. Thromb Res. 2006;117:597–602. [CrossRef] [PubMed] [Google Scholar]
  32. Karges HE, Funk KA, Ronneberger H Activity of coagulation and fibrinolysis parameters in animals. Arzneim Forsch. 1994;44:793–7. [Google Scholar]
  33. Andrew M, Ofosu F, Schmidt B, et al. Heparin clearance and ex vivo recovery in newborn piglets and adult pigs. Thromb Res. 1988;52:517–27. [CrossRef] [PubMed] [Google Scholar]
  34. Schmidt B, Buchanan MR, Ofosu F, et al. Antithrombotic properties of heparin in a neonatal piglet model of thrombin-induced thrombosis. Thromb Haemost. 1988;60:289–92. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.