Free Access
Issue
J Extra Corpor Technol
Volume 53, Number 1, March 2021
Page(s) 75 - 79
DOI https://doi.org/10.1051/ject/202153075
Published online 15 March 2021
  1. Husebråten IM, Fiane AE, Ringdal MAIL, et al. . Measurement of gaseous microemboli in the prime before the initiation of cardiopulmonary bypass. Perfusion. 2018;33:30–5. [CrossRef] [PubMed] [Google Scholar]
  2. Puis L, Milojevic M, Boer C, et al. . 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Interact CardioVasc Thorac Surg. 2020;30:161–202. [PubMed] [Google Scholar]
  3. Ranucci M, Baryshnikova E. Inflammation and coagulation following minimally invasive extracorporeal circulation technologies. J Thorac Dis. 2019;11(Suppl 10):S1480–8. [CrossRef] [PubMed] [Google Scholar]
  4. Panico FG, Neptune WB. A mechanism to eliminate the donor blood prime from the pump-oxygenator. Surg Forum. 1960;10:605–9. [PubMed] [Google Scholar]
  5. Rosengart TK, DeBois W, O’Hara M, et al. . Retrograde autologous priming for cardiopulmonary bypass: A safe and effective means of decreasing hemodilution and transfusion requirements. J Thorac Cardiovasc Surg. 1998;115:426–39. [CrossRef] [PubMed] [Google Scholar]
  6. Balachandran S, Cross MH, Karthikeyan S, et al. . Retrograde autologous priming of the cardiopulmonary bypass circuit reduces blood transfusion after coronary artery surgery. Ann Thorac Surg. 2002;73:1912–8. [CrossRef] [PubMed] [Google Scholar]
  7. Hagedorn C, Glogowski K, Valleley M, et al. . Retrograde autologous priming technique to reduce hemodilution during cardiopulmonary bypass in the pediatric cardiac patient. J Extra Corpor Technol. 2019;51:100–3. [PubMed] [Google Scholar]
  8. Vranken NP, Babar ZU, Montoya JA, et al. . Retrograde autologous priming to reduce allogeneic blood transfusion requirements: A systematic review. Perfusion. 2020;35:574–86. [CrossRef] [PubMed] [Google Scholar]
  9. Murphy GS, Szokol JW, Nitsun M, et al. . The failure of retrograde autologous priming of the cardiopulmonary bypass circuit to reduce blood use after cardiac surgical procedures. Anesth Analg. 2004;98:1201–7, table of contents. [CrossRef] [PubMed] [Google Scholar]
  10. Blanco-Morillo J, Sornichero-Caballero A, Arribas-Leal JM, et al. . Description of the Minimized Extracorporeal Circuit to perform Haematic Antegrade Repriming in Cardiopulmonary Bypass. 2020. Available at: https://zenodo.org/record/4273827#.X8yTLM1Kg2w. Accessed December 6, 2020. [Google Scholar]
  11. Blanco-Morillo J, Sornichero-Caballero A, Farina P, et al. . Haematic Antegrade Repriming Procedure to Initiate a Safer Cardiopulmonary Bypass. 2020. Available at: https://zenodo.org/record/4276132#.X8ySq81Kg2w. Accessed December 6, 2020. [Google Scholar]
  12. Busse LW, Barker N, Petersen C. Vasoplegic syndrome following cardiothoracic surgery—review of pathophysiology and update of treatment options. Crit Care. 2020;24:36. [CrossRef] [PubMed] [Google Scholar]
  13. Gao S, Li Y, Diao X, et al. . Vacuum-assisted venous drainage in adult cardiac surgery: A propensity-matched study. Interact Cardiovasc Thorac Surg. 2019;30:236–42. [Google Scholar]
  14. Blanco-Morillo J, Arribas JM, Lopez J, et al. . (apellido). To HAR or not to HAR: Identificación de predictores transfusionales en Circulación Extracorpórea. Revista Española de Perfusión. 2016;61:9–14. [Google Scholar]
  15. Patel N, Minhas JS, Chung EML. Intraoperative embolization and cognitive decline after cardiac surgery: A systematic review. Semin CardioThorac Vasc Anesth. 2016;20:225–31. [CrossRef] [PubMed] [Google Scholar]
  16. Blanco-Morillo JB, López SC, Ruiz ET, et al. . Embolia: El enemigo silente. Estudio multicéntrico anónimo para la descripción de eventos embólicos evitables en circulación extracorpórea. Revista de la Asociación Española de Enfermería Quirúrgica. 2018;41:55–63. [Google Scholar]
  17. Dacar D. Continuous blood density measurements and volume changes during extracorporeal circulation in patients undergoing cardiac surgery. Thorac Cardiovasc Surg. 1995;43:13–8. [CrossRef] [PubMed] [Google Scholar]
  18. Patel N, Banahan C, Janus J, et al. . Perioperative cerebral microbleeds after adult cardiac surgery. Stroke. 2019;50:336–43. [CrossRef] [PubMed] [Google Scholar]
  19. Myers GJ, Wegner J. Endothelial glycocalyx and cardiopulmonary bypass. J Extra Corpor Technol. 2017;49:174–81. [PubMed] [Google Scholar]
  20. Wu Q, Gao W, Zhou J, et al. . Correlation between acute degradation of the endothelial glycocalyx and microcirculation dysfunction during cardiopulmonary bypass in cardiac surgery. Microvasc Res. 2019;124:37–42. [CrossRef] [PubMed] [Google Scholar]
  21. Blanco-Morillo J. Haemo-Autologous Antegrade Repriming (HAR) as Minimum Impact Perfusion Strategy for Cardiopulmonary Bypass. ClinicalTrials.gov [Internet]. 2018. Available at: https://clinicaltrials.gov/ct2/show/NCT03720184. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.