Free Access
Editorial
Issue |
J Extra Corpor Technol
Volume 53, Number 3, September 2021
|
|
---|---|---|
Page(s) | 220 - 224 | |
DOI | https://doi.org/10.1051/ject/202153220 | |
Published online | 15 September 2021 |
- Bokeriia A, Golukhova E, Polunina AG. Postoperative delirium in cardiac surgery: Microembolic load is an important factor. Ann Thorac Surg. 2009;88:349–50. [CrossRef] [Google Scholar]
- Stump DA. Embolic factors associated with cardiac surgery. Sem Cardiothorac Vasc Anest. 2005;9:151–2. [CrossRef] [PubMed] [Google Scholar]
- Pugsley W, Klinger L, Paschalis C, et al. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke. 1994;25:1393–9. [CrossRef] [PubMed] [Google Scholar]
- Barak M, Katz Y. Microbubbles: Pathophysiology and clinical implications. Chest. 2005;128:2918–32. [CrossRef] [Google Scholar]
- Borger MA, Peniston CM, Weisel RD, et al. Neuropsychologic impairment after coronary artery bypass surgery: Effect of gaseous microemboli during perfusionist interventions. J Thorac Cardiovasc Surg. 2001;121:743–9. [CrossRef] [Google Scholar]
- Jabur GN, Sidhu K, Willcox T, et al. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators. Perfusion. 2016;31:409–17. [CrossRef] [PubMed] [Google Scholar]
- De Somer F. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. J Extra Corpor Technol. 2007;39:271–3. [Google Scholar]
- Siu-Man Wong S, Kwaan H, Ing TS, et al. Venous air embolism related to the use of central catheters revisited; with emphasis on dialysis catheters. Clin Kidney J. 2017;10:797–803. [CrossRef] [PubMed] [Google Scholar]
- Ryu SM, Park SM. Unexpected complication during extracorporeal membrane oxygenation support: Ventilator associated systemic air embolism. World J Clin Cases. 2018;6:274–8. [CrossRef] [Google Scholar]
- Kumar AKeshavamurthy S, Abraham JG, et al. J massive air embolism caused by a central venous catheter during extracorporeal membrane oxygenation. J Extra Corpor Technol. 2019;51:9–11. [Google Scholar]
- Albin SA. Air embolism. In: Sperry RJ, Johnson JO, Stanley TH, eds. Anesthesia and Central Nervous System Series, Vol. 28. New York, NY: Springer; 1993:251–80. [CrossRef] [Google Scholar]
- Adornato DC, Gildenberg PL, Ferrario CM, et al. Pathophysiology of intravenous air embolism in dogs. Anesthesiology. 1978;49:120–7. [CrossRef] [PubMed] [Google Scholar]
- Branger AB, Eckmann DM. Theoretical and experimental intravascular gas embolism absorption dynamics. J Appl Physiol. 1999;87:1287–95. [CrossRef] [PubMed] [Google Scholar]
- Van Hulst RA, Klein J, Lachmann B. Gas embolism: Pathophysiology and treatment. Clin Physiol Funct Imaging. 2003;23:237–46. [CrossRef] [Google Scholar]
- Linder JR, Ismail S, Spotnitz WD, et al. Albumin microbubble persistence during myocardial contrast echocardiography associated with microvascular endothelial glycocalyx damage. Circulation. 1998;98:2187–94. [CrossRef] [PubMed] [Google Scholar]
- Barak M, Nakhoul F, Katz Y. Reviews: Pathophysiology and clinical implications of microbubbles during hemodialysis. Semin Dial. 2008;21:232–8. [CrossRef] [Google Scholar]
- Eckmann DM, Armstead SC. Influence of endothelial glycocalyx degradation and surfactants on air embolism adhesion. Anesthesiology. 2006;105:1220–7. [CrossRef] [PubMed] [Google Scholar]
- Kobayashi S, Crooks S, Eckmann D. In vitro surfactant mitigation of gas bubble contact-induced endothelial cell death. Undersea Hyperb Med. 2011;38:27–39. [Google Scholar]
- Saigal D, Ganjoo P, Tetarway M, et al. Acute pulmonary edema and thrombocytopenia following venous air embolism during sitting position neurosurgery. Asian J Neurosurg. 2017;12:214–6. [CrossRef] [PubMed] [Google Scholar]
- Wilkens RG, Unverdorben M. Accidental intravenous infusion of air. J Infus Nurs. 2012;35:404–8. [CrossRef] [PubMed] [Google Scholar]
- Chuang DY, Sundararajan S, Sundararajan VA, et al. Accidental air embolism: An uncommon cause of iatrogenic stroke. Stroke. 2019;50:e183–6. [CrossRef] [PubMed] [Google Scholar]
- Carneiro AC, Diaz P, Vieira M, et al. Cerebral venous air embolism: A rare phenomenon. EJCRIM. 2019;6. doi: 10.12890/2019_001011. [Google Scholar]
- Vinan-Vega MN, Rahman R, Thompson J, et al. Air embolism following peripheral intravenous access. Baylor Univ Med Center Proc. 2019;32:433–34. [CrossRef] [PubMed] [Google Scholar]
- Possiter-Thornton M, Varma A, Verma N. Orbital air embolism after intravenous injection. J Neuro-Opthalmol. 2018;38:486–7. [CrossRef] [PubMed] [Google Scholar]
- Hsia TY, Gruber PJ. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: What we can and cannot do. Ann Thorac Surg. 2006;81:2381–8. [Google Scholar]
- Meir B, Lock JE. Contemporary management of patent foramen ovale. Circulation. 2003;107:5–9. [CrossRef] [PubMed] [Google Scholar]
- Lovering AT, Riemer RK, Thebaud B. Intrapulmonary arteriovenous anastomosis. Annals ATS. 2013;10:504–8. [CrossRef] [PubMed] [Google Scholar]
- Abushora MY, Bhatia N, Alnabki Z, et al. Intrapulmonary shunt is a potentially unrecognized cause of ischemic stroke and transient ischemic attack. J Am Soc Echocardiog. 2013;26:683–90. [CrossRef] [Google Scholar]
- Bothma PA, Schlimp CJ. Retrograde cerebral venous gas embolism: Are we missing too many cases?. British J Anaes. 2014;112:404–6. [Google Scholar]
- Saver JL. Cryptogenic stroke. N Engl J Med. 2016;374:2065–74. [CrossRef] [PubMed] [Google Scholar]
- Li L, Yiin GS, Geraghty OC, et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischemic attack and ischemic stroke: A population-based study. Lancet Neurol. 2015;14:903–13. [CrossRef] [Google Scholar]
- Horton JC. Air bubbles introduced from periphersal intravenous lines into the cerebral venous system. J Neuroophthalmol. 2019;39:437. [CrossRef] [PubMed] [Google Scholar]
- Brull SJ, Prielipp RC. Vascular air embolism: A silent hazard to patient safety. J Crit Care. 2017;42:255–63. [CrossRef] [Google Scholar]
- National Quality Forum (NQF). Serious reportable events in healthcare–2011 update: A consensus report. Washington, DC: NQF; 2011. Available at: https://www.doh.wa.gov/Portals/1/Documents/2900/NQF2011Update.pdf. Accessed January 18, 2021. [Google Scholar]
- Bulsara KR, Lee S, Calafiore R. Commentary: Air bubbles in infusion: An easily avoidable potential complication. Oper Neurosurg (Hagerstown). 2020;18:E59–60. [CrossRef] [PubMed] [Google Scholar]
- Kayano S, Ota H, Yamaguchi T, et al. Association of the incidence of venous air embolism on coronary computed tomography angiography with the intravenous access route preparation process. Medicine. 2019;98:45(e17940). [CrossRef] [PubMed] [Google Scholar]
- Bassett GC, Lin JW, Tran MM, et al. Evaluating the potential risks of bubbles study during echocardiography. Perfusion. 2015;30:219–23. [CrossRef] [PubMed] [Google Scholar]
- Romero JR, Frey JL, Schwamm LH, et al. Cerebral ischemia events associated with bubble study for identification of right to left shunts. Stroke. 2009;40:2343–8. [CrossRef] [PubMed] [Google Scholar]
- Bush RG, Derrick M, Manjoney D. Major neurological events following foam sclerotherapy. Phlebology. 2008;23:189–92. [CrossRef] [PubMed] [Google Scholar]
- Forlle M, Groudian M, Moore D, Sharnik G. Stroke after varicose foam injection sclerotherapy. J Vasc Surg. 2006;43:162–4. [CrossRef] [Google Scholar]
- Varga C, Luria I, Gravenstein N. Intravenous air: The partially invisible phenomenon. Anesth Analg. 2016;123:1149–55. [CrossRef] [PubMed] [Google Scholar]
- Kuzukawa A, Takenoshita M, Nosaka S. Air bubbles produced during blood warming for transfusion at slow rate: Their composition and a device (reservoir with a filter) to eliminate them. J Clin Anesth. 2005;17:148–9. [CrossRef] [Google Scholar]
- Abbruzzese PA, Meloni L, Cardu G, et al. Role of arterial filters in the prevention of systemic embolization by microbubbles released by oxygenators. Am J Cardiol. 1991;67:911–2. [CrossRef] [Google Scholar]
- Bhananker SM, Liau DW, Kooner PK, et al. Liability related to peripheral venous and arterial catheterization: A closed claims analysis. Anesth Analg. 2009;109:124–9. [CrossRef] [PubMed] [Google Scholar]
- Domino KB, Bowdle TA, Posner KL, et al. Injuries and liability related to central vascular catheters: A closed claims analysis. Anesthesiology. 2004;100:1411–8. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.