Free Access
Issue
J Extra Corpor Technol
Volume 53, Number 4, December 2021
Page(s) 279 - 285
DOI https://doi.org/10.1051/ject/202153279
Published online 15 December 2021
  1. Hofmann B, Kaufmann C, Stiller M, et al. Positive impact of retrograde autologous priming in adult patients undergoing cardiac surgery: A randomized clinical trial. J Cardiothorac Surg. 2018;13:50. [CrossRef] [Google Scholar]
  2. McSweeney ME, Garwood S, Levin J, et al. Adverse gastrointestinal complications after cardiopulmonary bypass: Can outcome be predicted from preoperative risk factors? Anesth Analg. 2004;98:1610–7. [CrossRef] [PubMed] [Google Scholar]
  3. Crawford TC, Magruder JT, Grimm JC, et al. Complications after cardiac operations: All are not created equal. Ann Thorac Surg. 2017;103:32–40. [CrossRef] [Google Scholar]
  4. Newland R, Baker R, Woodman R, et al. Predictive capacity of oxygen delivery during cardiopulmonary bypass on acute kidney injury. Ann Thorac Surg. 2019;108:1807–14. [CrossRef] [Google Scholar]
  5. Lopes JA, Jorge S. The RIFLE and AKIN classification for acute kidney injury: A critical and comprehensive review. Clin Kidney J. 2013;6:8–14. [CrossRef] [PubMed] [Google Scholar]
  6. Severdija EE, Heijmans JH, Theunissen M, et al. Retrograde autologous priming reduces transfusion requirements in coronary artery bypass surgery. Perfusion. 2011;20:315–21. [CrossRef] [PubMed] [Google Scholar]
  7. Vandewiele K, Bové T, De Somer FMJJ, et al. The effect of retrograde autologous priming volume on haemodilution and transfusion requirements during cardiac surgery. Interact Cardiovasc Thorac Surg. 2013;16:778–83. [CrossRef] [PubMed] [Google Scholar]
  8. Ranucci M, Baryshnikova E, Castelvecchio S, et al. Major bleeding, transfusions and anemia: The deadly triad of cardiac surgery. Ann Thorac Surg. 2013;96:478–85. [CrossRef] [Google Scholar]
  9. Stokes EA, Wordsworth S, Bargo D, et al. Are lower levels of red blood cell transfusion more cost-effective than liberal levels after cardiac surgery? Findings from the TITRe2 randomized controlled trial. BMJ Open. 2016;6:e011311. [CrossRef] [Google Scholar]
  10. Murphy GJ, Pike K, Rogers CA, et al. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med. 2015;372:944–82. [Google Scholar]
  11. Habib RH, Zacharias A, Schwann TA, et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: Should current practice be changed? J Thorac Cardiovasc Surg. 2003;125:1438–50. [CrossRef] [Google Scholar]
  12. DeFoe GR, Ross CS, Olmstead EL, et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass surgery. Ann Thorac Surg. 2001;71:69–76. [Google Scholar]
  13. Loor G, Li L, Sabik JF III, et al. Nadir hematocrit during cardiopulmonary bypass: End-organ dysfunction and mortality. J Thorac Cardiovasc Surg. 2012;144:654–62. [CrossRef] [Google Scholar]
  14. Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129:391–400. [CrossRef] [Google Scholar]
  15. Nanjappa A, Gill J, Sadat U, et al. The effect of retrograde autologous priming on intraoperative blood product transfusion in coronary artery bypass grafting. Perfusion. 2013;28:530–5. [CrossRef] [PubMed] [Google Scholar]
  16. Murphy GS, Szokal JW, Nitsun M, et al. The failure of retrograde autologous priming of the cardiopulmonary bypass circuit to reduce blood use after cardiac surgical procedures. Anesth Analg. 2004;90:1201–7. [CrossRef] [Google Scholar]
  17. Rasmussen S, Kandler K, Nielsen R, et al. Duration of critically low oxygen delivery is associated with acute kidney injury after cardiac surgery. Acta Anaesthesiol Scand. 2019;63:1290–7. [CrossRef] [PubMed] [Google Scholar]
  18. Newland RF, Baker RA. Low oxygen delivery as a predictor of acute kidney injury during cardiopulmonary bypass. J Extra Corpor Technol. 2017;49:224–30. [Google Scholar]
  19. Ranucci M, Romitti F, Isgro G, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80:2213–20. [CrossRef] [Google Scholar]
  20. Ji Q, Mei Y, Wang X, et al. Risk factors for pulmonary complications following cardiac surgery with cardiopulmonary bypass. Int J Med Sci. 2013;10:1578–83. [CrossRef] [Google Scholar]
  21. Kramer RS, Herron CR, Groom RC, Brown JR. Acute kidney injury subsequent to cardiac surgery. J Extra Corpor Technol. 2015;47:16–28. [Google Scholar]
  22. Xiong J, Tang X, Hu Z, et al. The RIFLE versus AKIN classification for incidence and mortality of acute kidney injury in critical ill patients: A meta-analysis. Sci Rep. 2015;5:17917. [CrossRef] [Google Scholar]
  23. Kumar AB, Suneja M. Cardiopulmonary bypass–associated acute kidney injury. Anesthesiology. 2011;114:964–70. [CrossRef] [PubMed] [Google Scholar]
  24. Stephens RS, Whitman GJ. Postoperative critical care of the adult cardiac surgical patient: Part II: Procedure-specific considerations, management of complications, and quality improvement. Crit Care Med. 2015;43:1995–2014. [CrossRef] [PubMed] [Google Scholar]
  25. Lim JY, Kang PJ, Jung SH, et al. Effect of high- versus low-volume saline administration on acute kidney injury after cardiac surgery. J Thorac Dis. 2018;10:6753–62. [CrossRef] [Google Scholar]
  26. Frenette AJ, Bouchard J, Bernier P, et al. Albumin administration is associated with acute kidney injury in cardiac surgery: A propensity score analysis. Crit Care. 2014;18:602. [CrossRef] [PubMed] [Google Scholar]
  27. Ng SY, Sanagou M, Wolfe R, et al. Prediction of acute kidney injury within 30 days of cardiac surgery. J Thorac Cardiovasc Surg. 2014;147:1875–83. [CrossRef] [Google Scholar]
  28. Stephens RS, Whitman GJ. Postoperative critical care of the adult cardiac surgical patient. Part I: Routine postoperative care. Crit Care Med. 2015;43:1477–97. [CrossRef] [PubMed] [Google Scholar]
  29. Engelman DT, Ben Ali W, Williams JB, et al. Guidelines for perioperative care in cardiac surgery: Enhanced recovery after surgery society recommendations. JAMA Surg. 2019;154:755–66. [CrossRef] [PubMed] [Google Scholar]
  30. Parke R, Gilder E, Gillham M, et al. Design and statistical analysis plan for a trial comparing a conservative fluid management strategy with usual care in patients after cardiac surgery: The FAB study. Crit Care Resusc. 2018;20:190–7. [Google Scholar]
  31. Cacciatore F, Belluomo Anello C, Ferrara N, et al. Determinants of prolonged intensive care unit stay after cardiac surgery in the elderly. Aging Clin Exp Res. 2012;24:627–34. [Google Scholar]
  32. Sun B, Dickinson T, Tesdahl E, et al. The unintended consequences of over-reducing cardiopulmonary bypass circuit prime volume. Ann Thorac Surg. 2017;103:1842–8. [CrossRef] [Google Scholar]
  33. Sakwa M, Emery R, Shannon F, et al. Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: A prospective, randomized trial. J Thorac Cardiovasc Surg. 2009;137:481–5. [CrossRef] [Google Scholar]
  34. McCusker K, Vijay V, DeBois W, et al. MAST system: A new condensed cardiopulmonary bypass circuit for adult cardiac surgery. Perfusion. 2001;16:447–52. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.