Free Access
Review
Issue
J Extra Corpor Technol
Volume 54, Number 1, March 2022
Page(s) 50 - 60
DOI https://doi.org/10.1051/ject/202254050
Published online 15 March 2022
  1. Veluz JS, Leary MC. Cerebrovascular complications of cardiac surgery. In: Caplan LR, Biller J, Leary MC, et al. , eds. Primer on Cerebrovascular Diseases, 2nd ed. San Diego, CA: Academic Press; 2017:650–5. [CrossRef] [Google Scholar]
  2. Wilkens H, Regelson W, Hoffmeister FS. The physiologic importance of pulsatile blood flow. N Engl J Med. 1962;267:443–6. [CrossRef] [PubMed] [Google Scholar]
  3. Voss B, Krane M, Jung C, et al. Cardiopulmonary bypass with physiological flow and pressure curves: Pulse is unnecessary! Eur J Cardiothorac Surg. 2010;37:223–32. [CrossRef] [Google Scholar]
  4. Taylor KM, Bain WH, Maxted KJ, et al. Comparative studies of pulsatile and nonpulsatile flow during cardiopulmonary bypass. I. Pulsatile system employed and its hematologic effects. J Thorac Cardiovasc Surg. 1978;75:569–73. [CrossRef] [Google Scholar]
  5. Pappas G, Winter SD, Kopriva CJ, et al. Improvement of myocardial and other vital organ functions and metabolism with a simple method of pulsatile flow (IABP) during clinical cardiopulmonary bypass. Surgery. 1975;77:34–44. [Google Scholar]
  6. Kunst G, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Br J Anaesth. 2019;123:713–57. [CrossRef] [Google Scholar]
  7. Tan Z, Besser M, Anderson S, et al. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: Extent of hemolysis and clinical significance. ASAIO J. 2020;66:1025–30. [CrossRef] [PubMed] [Google Scholar]
  8. Ali MH, Schumacker PT. Endothelial responses to mechanical stress: Where is the mechanosensor? Crit Care Med. 2002;30:S198–206. [CrossRef] [PubMed] [Google Scholar]
  9. Li Y-SJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71. [CrossRef] [Google Scholar]
  10. Dragovich M, Chester D, Frank Zhang X. Mechanotransduction of the endothelial glycocalyx mediates nitric oxide production through activation of TRP channels. Biophys J. 2016;110:23a. [CrossRef] [Google Scholar]
  11. Tousoulis D, Kampoli A-M, Tentolouris C, et al. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10:4–18. [CrossRef] [Google Scholar]
  12. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67. [CrossRef] [PubMed] [Google Scholar]
  13. Dekker NAM, Veerhoek D, Koning NJ, et al. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia. 2019;74:609–18. [Google Scholar]
  14. Spinale FG. The bioactive peptide endothelin causes multiple biologic responses relevant to myocardial and vascular performance after cardiac surgery. J Thorac Cardiovasc Surg. 2002;123:1031–34. [CrossRef] [Google Scholar]
  15. Minami K, Körner MM, Vyska K, et al. Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1990;99:82–91. [CrossRef] [Google Scholar]
  16. Landymore RW, Murphy DA, Kinley CE, et al. Does pulsatile flow influence the incidence of postoperative hypertension? Ann Thorac Surg. 1979;28:261–8. [CrossRef] [Google Scholar]
  17. Hutcheson IR, Griffith TM. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol. 1991;261:H257–62. [Google Scholar]
  18. Hickey PR, Buckley MJ, Philbin DM. Pulsatile and nonpulsatile cardiopulmonary bypass: Review of a counterproductive controversy. Ann Thorac Surg. 1983;36:720–37. [CrossRef] [Google Scholar]
  19. Orime Y, Shiono M, Nakata K, et al. The role of pulsatility in end-organ microcirculation after cardiogenic shock. ASAIO J. 1996;42:M724–9. [CrossRef] [PubMed] [Google Scholar]
  20. Sezai A, Shiono M, Orime Y, et al. Major organ function under mechanical support: Comparative studies of pulsatile and nonpulsatile circulation. Artif Organs. 1999;23:280–5. [CrossRef] [PubMed] [Google Scholar]
  21. Undar A, Masai T, Frazier OH, et al. . Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J. 1999;45:610–4. [CrossRef] [PubMed] [Google Scholar]
  22. Soucy KG, Koenig SC, Giridharan GA, et al. Defining pulsatility during continuous-flow ventricular assist device support. J Heart Lung Transplant. 2013;32:581–7. [CrossRef] [Google Scholar]
  23. Wright G. Mechanical simulation of cardiac function by means of pulsatile blood pumps. J Cardiothorac Vasc Anesth. 1997;11:299–309. [CrossRef] [Google Scholar]
  24. Undar A. The ABCs of research on pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass. Med Sci Monit. 2002;8:ED21–4. [Google Scholar]
  25. Undar A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif Organs. 2004;28:439–43. [CrossRef] [Google Scholar]
  26. Undar A, Eichstaedt HC, Masai T, et al. Precise quantification of pulsatility is a necessity for direct comparisons of six different pediatric heart-lung machines in a neonatal CPB model. ASAIO J. 2005;51:600–3. [CrossRef] [PubMed] [Google Scholar]
  27. Wang S, Haines N, Undar A. Hemodynamic energy delivery of the pulsatile flow in a simulated pediatric extracorporeal circuit. ASAIO J. 2009;55:96–9. [CrossRef] [PubMed] [Google Scholar]
  28. Li G, Jiang W, Zhang Y, et al. The outcome of pediatric patients undergoing congenital cardiac surgery under pulsatile cardiopulmonary bypass in different frequencies. Ther Clin Risk Manag. 2018;14:1553–61. [CrossRef] [Google Scholar]
  29. Ündar AWS. Pulsatile flow during cardiopulmonary bypass procedures. In: Tschaut R, Rosenthal T, Hodge A, et al. , eds. Extracorporeal Circulation in Theory and Practice. PABST VERLAG; 2020:279–85. [Google Scholar]
  30. Talor JJ, Undar A. Pediatric cardiopulmonary bypass: Does perfusion mode matter? World J Pediatr Congenit Heart Surg. 2011;2:296–300. [CrossRef] [PubMed] [Google Scholar]
  31. Wang S, Haines N, Undar A. Quantification of pressure-flow waveforms and selection of components for the pulsatile extracorporeal circuit. J Extra Corpor Technol. 2009;41:20–5. [Google Scholar]
  32. Milano AD, Dodonov M, Onorati F, et al. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass. Interact Cardiovasc Thorac Surg. 2013;17:811–7. [CrossRef] [PubMed] [Google Scholar]
  33. Dodonov M, Milano A, Onorati F, et al. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: Pulsatile flow versus nonpulsatile flow. Artif Organs. 2013;37:357–67. [CrossRef] [Google Scholar]
  34. Assmann A, Benim AC, Gül F, et al. Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress. J Biomech. 2012;45:156–63. [CrossRef] [Google Scholar]
  35. Song Z, Wang C, Stammers AH. Clinical comparison of pulsatile and nonpulsatile perfusion during cardiopulmonary bypass. J Extra Corpor Technol. 1997;29:170–5. [Google Scholar]
  36. Louagie YA, Gonzalez M, Collard E, et al. Does flow character of cardiopulmonary bypass make a difference? J Thorac Cardiovasc Surg. 1992;104:1628–38. [CrossRef] [Google Scholar]
  37. Murkin JM, Martzke JS, Buchan AM, et al. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. I. Mortality and cardiovascular morbidity. J Thorac Cardiovasc Surg. 1995;110:340–8. [CrossRef] [Google Scholar]
  38. Poswal P, Mehta Y, Juneja R, et al. Comparative study of pulsatile and nonpulsatile flow during cardio-pulmonary bypass. Ann Card Anaesth. 2004;7:44–50. [CrossRef] [PubMed] [Google Scholar]
  39. Adademir T, Ak K, Aljodi M, et al. The effects of pulsatile cardiopulmonary bypass on acute kidney injury. Int J Artif Organs. 2012;35:511–9. [CrossRef] [PubMed] [Google Scholar]
  40. Gu YJ, van Oeveren W, Mungroop HE, et al. Clinical effectiveness of centrifugal pump to produce pulsatile flow during cardiopulmonary bypass in patients undergoing cardiac surgery. Artif Organs. 2011;35:E18–26. [Google Scholar]
  41. Sezai A, Shiono M, Nakata K-I, et al. Effects of pulsatile CPB on interleukin-8 and endothelin-1 levels. Artif Organs. 2005;29:708–13. [CrossRef] [PubMed] [Google Scholar]
  42. Milano AD, Dodonov M, Van Oeveren W, et al. . Pulsatile cardiopulmonary bypass and renal function in elderly patients undergoing aortic valve surgery. Eur J Cardiothorac Surg. 2015;47:291–8, discussion 298. [CrossRef] [PubMed] [Google Scholar]
  43. Baraki H, Gohrbandt B, Del Bagno B, et al. Does pulsatile perfusion improve outcome after cardiac surgery? A propensity-matched analysis of 1959 patients. Perfusion. 2012;27:166–74. [CrossRef] [PubMed] [Google Scholar]
  44. Farid S, Povey H, Anderson S, et al. The effect of pulsatile cardiopulmonary bypass on the need for haemofiltration in patients with renal dysfunction undergoing cardiac surgery. Perfusion. 2016;31:477–81. [CrossRef] [PubMed] [Google Scholar]
  45. Coulson TG, McPhilimey E, Falter F, et al. The association between pulsatile cardiopulmonary bypass and acute kidney injury after cardiac surgery: A before-and-after study. J Cardiothorac Vasc Anesth. 2020;34:108–13. [CrossRef] [Google Scholar]
  46. Machado MN, Nakazone MA, Maia LN. Acute kidney injury based on KDIGO (Kidney Disease Improving Global Outcomes) criteria in patients with elevated baseline serum creatinine undergoing cardiac surgery. Rev Bras Cir Cardiovasc. 2014;29:299–307. [Google Scholar]
  47. Zarbock A, Küllmar M, Ostermann M, et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the Kdigo guidelines in high-risk patients identified by biomarkers: The Prevaki-multicenter randomized controlled trial. Anesth Analg. 2021;133:292–302. [CrossRef] [PubMed] [Google Scholar]
  48. Onorati F, Presta P, Fuiano G, et al. A randomized trial of pulsatile perfusion using an intra-aortic balloon pump versus nonpulsatile perfusion on short-term changes in kidney function during cardiopulmonary bypass during myocardial reperfusion. Am J Kidney Dis. 2007;50:229–38. [CrossRef] [Google Scholar]
  49. Onorati F, Santarpino G, Rubino AS, et al. Body perfusion during adult cardiopulmonary bypass is improved by pulsatile flow with intra-aortic balloon pump. Int J Artif Organs. 2009;32:50–61. [CrossRef] [PubMed] [Google Scholar]
  50. Onorati F, Santarpino G, Presta P, et al. Pulsatile perfusion with intra-aortic balloon pumping ameliorates whole body response to cardiopulmonary bypass in the elderly. Crit Care Med. 2009;37:902–11. [CrossRef] [PubMed] [Google Scholar]
  51. Serraino GF, Marsico R, Musolino G, et al. Pulsatile cardiopulmonary bypass with intra-aortic balloon pump improves organ function and reduces endothelial activation. Circ J. 2012;76:1121–9. [CrossRef] [PubMed] [Google Scholar]
  52. Onorati F, Cristodoro L, Mastroroberto P, et al. Should we discontinue intraaortic balloon during cardioplegic arrest? Splanchnic function results of a prospective randomized trial. Ann Thorac Surg. 2005;80:2221–8. [CrossRef] [Google Scholar]
  53. Sievert A, Sistino J. A meta-analysis of renal benefits to pulsatile perfusion in cardiac surgery. J Extra Corpor Technol. 2012;44:10–4. [Google Scholar]
  54. Nam MJ, Lim CH, Kim H-J, et al. A meta-analysis of renal function after adult cardiac surgery with pulsatile perfusion. Artif Organs. 2015;39:788–94. [CrossRef] [Google Scholar]
  55. Onorati F, Cristodoro L, Bilotta M, et al. Intraaortic balloon pumping during cardioplegic arrest preserves lung function in patients with chronic obstructive pulmonary disease. Ann Thorac Surg. 2006;82:35–43. [CrossRef] [Google Scholar]
  56. Driessen JJ, Dhaese H, Fransen G, et al. Pulsatile compared with nonpulsatile perfusion using a centrifugal pump for cardiopulmonary bypass during coronary artery bypass grafting. Effects on systemic haemodynamics, oxygenation, and inflammatory response parameters. Perfusion. 1995;10:3–12. [CrossRef] [PubMed] [Google Scholar]
  57. Engels GE, Dodonov M, Rakhorst G, et al. The effect of pulsatile cardiopulmonary bypass on lung function in elderly patients. Int J Artif Organs. 2014;37:679–87. [CrossRef] [PubMed] [Google Scholar]
  58. Tarcan O, Ozatik MA, Kale A, et al. Comparison of pulsatile and non-pulsatile cardiopulmonary bypass in patients with chronic obstructive pulmonary disease. Med Sci Monit. 2004;10:CR294–9. [Google Scholar]
  59. Onorati F, Rubino AS, Nucera S, et al. Off-pump coronary artery bypass surgery versus standard linear or pulsatile cardiopulmonary bypass: Endothelial activation and inflammatory response. Eur J Cardiothorac Surg. 2010;37:897–904. [CrossRef] [Google Scholar]
  60. Lim C-H, Nam M-J, Lee J-S, et al. A meta-analysis of pulmonary function with pulsatile perfusion in cardiac surgery. Artif Organs. 2015;39:110–7. [CrossRef] [Google Scholar]
  61. O’Neil MP, Fleming JC, Badhwar A, et al. . Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: Microcirculatory and systemic effects. Ann Thorac Surg. 2012;94:2046–53. [CrossRef] [Google Scholar]
  62. Mathie RT, Ohri SK, Keogh BE, et al. . Nitric oxide activity in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;112:1394–5. [CrossRef] [Google Scholar]
  63. Ohri SK, Bowles CW, Mathie RT, et al. . Effect of cardiopulmonary bypass perfusion protocols on gut tissue oxygenation and blood flow. Ann Thorac Surg. 1997;64:163–70. [CrossRef] [Google Scholar]
  64. Hamulu A, Atay Y, Yağdi T, et al. Effects of flow types in cardiopulmonary bypass on gastric intramucosal pH. Perfusion. 1998;13:129–35. [CrossRef] [PubMed] [Google Scholar]
  65. Öztürk S, Saçar M, Baltalarlı A, et al. . Effect of the type of cardiopulmonary bypass pump flow on postoperative cognitive function in patients undergoing isolated coronary artery surgery. Anatol J Cardiol. 2016;16:875–80. [Google Scholar]
  66. Aykut K, Albayrak G, Guzeloglu M, et al. Pulsatile versus non-pulsatile flow to reduce cognitive decline after coronary artery bypass surgery: A randomized prospective clinical trial. J Cardiovasc Dis Res. 2013;4:127–9. [CrossRef] [Google Scholar]
  67. Murkin JM, Martzke JS, Buchan AM, et al. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery: II. neurologic and cognitive outcomes. J Thorac Cardiovasc Surg. 1995;110:349–62. [CrossRef] [Google Scholar]
  68. Takahara Y, Sudo Y, Nakano H, et al. Strategy for reduction of stroke incidence in coronary bypass patients with cerebral lesions. Early results and mid-term morbidity using pulsatile perfusion. Jpn J Thorac Cardiovasc Surg. 2000;48:551–6. [CrossRef] [PubMed] [Google Scholar]
  69. Abramov D, Tamariz M, Serrick CI, et al. . The influence of cardiopulmonary bypass flow characteristics on the clinical outcome of 1820 coronary bypass patients. Can J Cardiol. 2003;19:237–43. [Google Scholar]
  70. Kawahara F, Kadoi Y, Saito S, et al. . Balloon pump-induced pulsatile perfusion during cardiopulmonary bypass does not improve brain oxygenation. J Thorac Cardiovasc Surg. 1999;118:361–6. [CrossRef] [Google Scholar]
  71. Grubhofer G, Mares P, Rajek A, et al. Pulsatility does not change cerebral oxygenation during cardiopulmonary bypass. Acta Anaesthesiol Scand. 2000;44:586–91. [CrossRef] [Google Scholar]
  72. Kusch B, Vogt S, Sirat AS, et al. . Serum S-100beta protein release in coronary artery bypass grafting: Laminar versus pulsatile flow. Thorac Cardiovasc Surg. 2001;49:179–83. [CrossRef] [Google Scholar]
  73. Bayram H, Erer D, Iriz E, et al. Comparison of the effects of pulsatile cardiopulmonary bypass, non-pulsatile cardiopulmonary bypass and off-pump coronary artery bypass grafting on the inflammatory response and S-100beta protein. Perfusion. 2012;27:56–64. [CrossRef] [PubMed] [Google Scholar]
  74. Onorati F, Esposito A, Comi MC, et al. . Intra-aortic balloon pump-induced pulsatile flow reduces coagulative and fibrinolytic response to cardiopulmonary bypass. Artif Organs. 2008;32:433–41. [CrossRef] [PubMed] [Google Scholar]
  75. Koning NJ, Vonk ABA, van Barneveld LJ, et al. . Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics. J Appl Physiol. 2012;112:1727–34. [CrossRef] [PubMed] [Google Scholar]
  76. Orime Y, Shiono M, Hata H, et al. Cytokine and endothelial damage in pulsatile and nonpulsatile cardiopulmonary bypass. Artif Organs. 1999;23:508–12. [CrossRef] [PubMed] [Google Scholar]
  77. Hyde JA, Riddington DW, Hutton P, et al. Prevention of remote organ injury in cardiopulmonary bypass: The impact of flow generation technique. Artif Organs. 1997;21:825–9. [CrossRef] [Google Scholar]
  78. Onorati F, Santarpino G, Tangredi G, et al. Intra-aortic balloon pump induced pulsatile perfusion reduces endothelial activation and inflammatory response following cardiopulmonary bypass. Eur J Cardiothorac Surg. 2009;35:1012–9, discussion 1019. [CrossRef] [Google Scholar]
  79. Knothe CH, Boldt J, Zickmann B, et al. Influence of different flow modi during extracorporeal circulation on endothelial-derived vasoactive substances. Perfusion. 1995;10:229–36. [CrossRef] [PubMed] [Google Scholar]
  80. Lanzarone E, Gelmini F, Tessari M, et al. Preservation of endothelium nitric oxide release by pulsatile flow cardiopulmonary bypass when compared with continuous flow. Artif Organs. 2009;33:926–34. [CrossRef] [Google Scholar]
  81. O’Neil MP, Alie R, Guo LR, et al. . Microvascular responsiveness to pulsatile and nonpulsatile flow during cardiopulmonary bypass. Ann Thorac Surg. 2018;105:1745–53. [CrossRef] [Google Scholar]
  82. Elbers PWG, Wijbenga J, Solinger F, et al. . Direct observation of the human microcirculation during cardiopulmonary bypass: Effects of pulsatile perfusion. J Cardiothorac Vasc Anesth. 2011;25:250–5. [CrossRef] [Google Scholar]
  83. Hoefeijzers MP, ter Horst LH, Koning N, Vonk AB, Boer C, Elbers PWG. The pulsatile perfusion debate in cardiac surgery: Answers from the microcirculation? J Cardiothorac Vasc Anesth. 2015;29:761–7. [CrossRef] [Google Scholar]
  84. Onorati F, De Feo M, Mastroroberto P, et al. Determinants and prognosis of myocardial damage after coronary artery bypass grafting. Ann Thorac Surg. 2005;79:837–45. [CrossRef] [Google Scholar]
  85. Alghamdi AA, Latter DA. Pulsatile versus nonpulsatile cardiopulmonary bypass flow: An evidence-based approach. J Card Surg. 2006;21:347–54. [CrossRef] [PubMed] [Google Scholar]
  86. Tovedal T, Thelin S, Lennmyr F. Cerebral oxygen saturation during pulsatile and non-pulsatile cardiopulmonary bypass in patients with carotid stenosis. Perfusion. 2016;31:72–7. [CrossRef] [PubMed] [Google Scholar]
  87. Christenson JT, Simonet F, Badel P, et al. Evaluation of preoperative intra-aortic balloon pump support in high risk coronary patients. Eur J Cardiothorac Surg. 1997;11:1097–103, discussion 1104. [CrossRef] [Google Scholar]
  88. Dietl CA, Berkheimer MD, Woods EL, et al. Efficacy and cost-effectiveness of preoperative IABP in patients with ejection fraction of 0.25 or less. Ann Thorac Surg. 1996;62:401–8, discussion 408–9. [CrossRef] [Google Scholar]
  89. Gutfinger DE, Ott RA, Miller M, et al. . Aggressive preoperative use of intraaortic balloon pump in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 1999;67:610–3. [CrossRef] [Google Scholar]
  90. Rampersad PP, Udell JA, Zawi R, et al. Preoperative intraaortic balloon pump improves early outcomes following high-risk coronary artery bypass graft surgery: A metaaAnalysis of randomized trials and prospective study design. J Invasive Cardiol. 2018;30:2–9. [Google Scholar]
  91. Sunagawa G, Koprivanac M, Karimov JH, et al. Is a pulse absolutely necessary during cardiopulmonary bypass? Expert Rev Med Devices. 2017;14:27–35. [CrossRef] [PubMed] [Google Scholar]
  92. Parissis H, Soo A, Al-Alao B. Intra aortic balloon pump: Literature review of risk factors related to complications of the intraaortic balloon pump. J Cardiothorac Surg. 2011;6:147. [CrossRef] [Google Scholar]
  93. Cheng A, Williamitis CA, Slaughter MS. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: Is there an advantage to pulsatility? Ann Cardiothorac Surg. 2014;3:573–81. [Google Scholar]
  94. Garatti A, Bruschi G, Colombo T, et al. Clinical outcome and bridge to transplant rate of left ventricular assist device recipient patients: Comparison between continuous-flow and pulsatile-flow devices. Eur J Cardiothorac Surg. 2008;34:275–80. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.