Open Access
Issue |
J Extra Corpor Technol
Volume 55, Number 2, June 2023
|
|
---|---|---|
Page(s) | 70 - 81 | |
DOI | https://doi.org/10.1051/ject/2023015 | |
Published online | 28 June 2023 |
- Shaw RE, Johnson CK, Ferrari G, et al. (2014) Blood transfusion in cardiac surgery does increase the risk of 5-year mortality: results from a contemporary series of 1714 propensity-matched patients. Transfusion 54, 1106–1113. [CrossRef] [PubMed] [Google Scholar]
- Terwindt LE, Karlas AA, Eberl S, et al. (2019) Patient blood management in the cardiac surgical setting: an updated overview. Transfus Apher Sci 58, 397–407. [CrossRef] [PubMed] [Google Scholar]
- Baker L, Park L, Gilbert R, et al. (2021) Intraoperative red blood cell transfusion decision-making: a systematic review of guidelines. Ann Surg 274, 86–96. [CrossRef] [PubMed] [Google Scholar]
- Bourque JL, Strobel RJ, Loh J, et al. (2021) Risk and safety perceptions contribute to transfusion decisions in coronary artery bypass grafting. J Extra Corpor Technol 53, 270–278. [PubMed] [Google Scholar]
- Carson JL, Stanworth SJ, Dennis JA, et al. (2021) Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst Rev 12, CD002042. [PubMed] [Google Scholar]
- Fabbro M 2nd, Patel PA, Henderson RA Jr, Bolliger D, Tanaka KA, Mazzeffi MA (2022) Coagulation and transfusion updates from 2021. J Cardiothorac Vasc Anesth 36, 3447–3458. [CrossRef] [PubMed] [Google Scholar]
- Møller A, Wetterslev J, Shahidi S, et al. (2021) Effect of low vs. high haemoglobin transfusion trigger on cardiac output in patients undergoing elective vascular surgery: post-hoc analysis of a randomized trial. Acta Anaesthesiol Scand 65, 302–312. [CrossRef] [PubMed] [Google Scholar]
- Tanhehco YC (2021) Red blood cell transfusion. Clin Lab Med 41, 611–619. [CrossRef] [PubMed] [Google Scholar]
- Zeroual N, Blin C, Saour M, et al. (2021) Restrictive transfusion strategy after cardiac surgery. Anesthesiology 134, 370–380. [CrossRef] [PubMed] [Google Scholar]
- Surgenor SD, Kramer RS, Olmstead EM, et al. (2009) The association of perioperative red blood cell transfusions and decreased long-term survival after cardiac surgery. Anesth Analg 108, 1741–1746. [CrossRef] [PubMed] [Google Scholar]
- Warwick R, Mediratta N, Chalmers J, et al. (2013) Is single-unit blood transfusion bad post-coronary artery bypass surgery? Interact Cardiovasc Thorac Surg 16, 765–771. [CrossRef] [PubMed] [Google Scholar]
- Neef V, Vo L, Herrmann E, et al. (2021) The association between intraoperative cell salvage and red blood cell transfusion in cardiac surgery – An observational study in a patient blood management centre. Anaesthesiol Intensive Ther 53, 1–9. [CrossRef] [PubMed] [Google Scholar]
- Brouwers C, Hooftman B, Vonk S, et al. (2017) Benchmarking the use of blood products in cardiac surgery to stimulate awareness of transfusion behaviour: results from a four-year longitudinal study. Neth Heart J 25, 207–214. [CrossRef] [PubMed] [Google Scholar]
- Blaudszun G, Butchart A, Klein AA (2018) Blood conservation in cardiac surgery. Transfus Med 28, 168–180. [CrossRef] [PubMed] [Google Scholar]
- Yousuf MS, Samad K, Ahmed SS, Siddiqui KM, Ullah H (2022) Cardiac surgery and blood-saving techniques: an update. Cureus 14, e21222. [PubMed] [Google Scholar]
- Seyfried T, Hansen E (2019) Cell salvage: scientific evidence, clinical practice and legal framework. Anaesthesist 68, 69–82. [CrossRef] [PubMed] [Google Scholar]
- Carr BD, Johnson TJ, Gomez-Rexrode A, et al. (2020) Inflammatory effects of blood-air interface in a porcine cardiopulmonary bypass model. ASAIO J 66, 72–78. [CrossRef] [PubMed] [Google Scholar]
- Evora PR, Bottura C, Arcencio L, Albuquerque AA, Evora PM, Rodrigues AJ (2016) Key points for curbing cardiopulmonary bypass inflammation. Acta Cir Bras 31 (Suppl 1), 45–52. [CrossRef] [PubMed] [Google Scholar]
- Ferraris VA, Ballert EQ, Mahan A (2013) The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome. Am J Surg 205, 457–465. [CrossRef] [PubMed] [Google Scholar]
- Kramer RS, Groom RC (2018) Influence of intraoperative autotransfusion on postoperative hematocrit after cardiac surgery: a cross-sectional study. J Extra Corpor Technol 50, 126. [PubMed] [Google Scholar]
- Stasko AJ, Stammers AH, Mongero LB, Tesdahl EA, Weinstein S (2017) The influence of intraoperative autotransfusion on postoperative hematocrit after cardiac surgery: A cross-sectional study. J Extra Corpor Technol 49, 241–248. [PubMed] [Google Scholar]
- Träger K, Fritzler D, Fischer G, et al. (2016) Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: a case series. Int J Artif Organs 39, 141–146. [CrossRef] [PubMed] [Google Scholar]
- Yasukawa T, Manabe S, Hiraoka D, et al. (2019) Safety and efficacy of a simple cardiotomy suction system as a blood salvage procedure during off-pump coronary artery bypass surgery. J Artif Organs 22, 194–199. [CrossRef] [PubMed] [Google Scholar]
- Xie J, Feng X, Ma J, et al. (2015) Is postoperative cell salvage necessary in total hip or knee replacement? A meta-analysis of randomized controlled trials. Int J Surg 21, 135–144. [CrossRef] [PubMed] [Google Scholar]
- Appelt H, Philipp A, Mueller T, et al. (2020) Factors associated with hemolysis during extracorporeal membrane oxygenation (ECMO)-Comparison of VA- versus VV ECMO. PLoS One 15, e0227793. [CrossRef] [PubMed] [Google Scholar]
- Barrett CS, Jaggers JJ, Cook EF, et al. (2013) Pediatric ECMO outcomes: comparison of centrifugal versus roller blood pumps using propensity score matching. ASAIO J 59, 145–151. [CrossRef] [PubMed] [Google Scholar]
- Byrnes J, McKamie W, Swearingen C, et al. (2011) Hemolysis during cardiac extracorporeal membrane oxygenation: a case-control comparison of roller pumps and centrifugal pumps in a pediatric population. ASAIO J 57, 456–461. [CrossRef] [PubMed] [Google Scholar]
- Ozturk M, O’Rear EA, Papavassiliou DV (2015) Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations. Artif Organs 39, E227–E239. [CrossRef] [PubMed] [Google Scholar]
- Sakota D, Sakamoto R, Sobajima H, et al. (2008) Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma. Artif Organs 32, 785–791. [CrossRef] [PubMed] [Google Scholar]
- Sun W, Wang S, Chen Z, et al. (2020) Impact of high mechanical shear stress and oxygenator membrane surface on blood damage relevant to thrombosis and bleeding in a pediatric ECMO circuit. Artif Organs 44, 717–726. [CrossRef] [PubMed] [Google Scholar]
- Westerberg M, Bengtsson A, Jeppsson A (2004) Coronary surgery without cardiotomy suction and autotransfusion reduces the postoperative systemic inflammatory response. Ann Thorac Surg 78, 54–59. [CrossRef] [PubMed] [Google Scholar]
- Boulos L, Kuebler JD, Angona R, et al. (2021) Cell saver blood reinfusion up to 24 hours post collection in pediatric cardiac surgical patients does not increase incidence of hospital-acquired infections or mortality J Extra Corpor Technol 53, 161–169. [PubMed] [Google Scholar]
- Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA (2010) Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev 2010, CD001888. [PubMed] [Google Scholar]
- Ferraris VA, Brown JR, Despotis GJ, et al. (2011) 2011 update to The Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists Blood Conservation clinical practice guidelines. Ann Thorac Surg 91, 944–982. [CrossRef] [PubMed] [Google Scholar]
- Koo BN, Kwon MA, Kim SH, et al. (2019) Korean clinical practice guideline for perioperative red blood cell transfusion from Korean Society of Anesthesiologists. Korean J Anesthesiol 72, 91–118. [CrossRef] [PubMed] [Google Scholar]
- Al-Mandhari S, Maddali MM, Al-Bahrani MJ (2015) Cell salvage during coronary artery bypass surgery and allogenic blood exposure. Asian Cardiovasc Thorac Ann 23, 913–916. [CrossRef] [PubMed] [Google Scholar]
- Cote CL, Yip AM, MacLeod JB, et al. (2016) Efficacy of intraoperative cell salvage in decreasing perioperative blood transfusion rates in first-time cardiac surgery patients: a retrospective study. Can J Surg 59, 330–336. [CrossRef] [PubMed] [Google Scholar]
- Meybohm P, Choorapoikayil S, Wessels A, Herrmann E, Zacharowski K, Spahn DR (2016) Washed cell salvage in surgical patients: a review and meta-analysis of prospective randomized trials under PRISMA. Medicine (Baltimore) 95, e4490. [CrossRef] [PubMed] [Google Scholar]
- Frank SM, Sikorski RA, Konig G, et al. (2020) Clinical utility of autologous salvaged blood: a review. J Gastrointest Surg 24, 464–472. [CrossRef] [PubMed] [Google Scholar]
- Lu PC, Lai HC, Liu JS (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech 34, 1361–1364. [CrossRef] [PubMed] [Google Scholar]
- Sutera SP, Croce PA, Mehrjardi M (1972) Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. Trans Am Soc Artif Intern Organs 18 (335–41): 347. [CrossRef] [Google Scholar]
- van Oeveren W, Jansen NJ, Bidstrup BP, et al. (1987) Effects of aprotinin on hemostatic mechanisms during cardiopulmonary bypass. Ann Thorac Surg 44, 640–645. [CrossRef] [PubMed] [Google Scholar]
- Wielogorski JW, Cross DE, Nwadike EV (1975) The effects of subatmospheric pressure on the haemolysis of blood. J Biomech 8, 321–325. [CrossRef] [PubMed] [Google Scholar]
- Wright G, Sanderson JM (1979) Cellular aggregation and trauma in cardiotomy suction systems. Thorax 34, 621–628. [CrossRef] [PubMed] [Google Scholar]
- Yen JH, Chen SF, Chern MK, Lu PC (2014) The effect of turbulent viscous shear stress on red blood cell hemolysis. J Artif Organs 17, 178–185. [CrossRef] [PubMed] [Google Scholar]
- Goubergrits L, Kertzscher U, Lommel M (2019) Past and future of blood damage modelling in a view of translational research. Int J Artif Organs 42, 125–132. [CrossRef] [PubMed] [Google Scholar]
- Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36, 476–483. [CrossRef] [PubMed] [Google Scholar]
- McNamee AP, Simmonds MJ, Inoue M, et al. (2021) Erythrocyte morphological symmetry analysis to detect sublethal trauma in shear flow. Sci Rep 11, 23566. [CrossRef] [PubMed] [Google Scholar]
- Hund SJ, Antaki JF, Massoudi M (2010) On the Representation of Turbulent Stresses for Computing Blood Damage. Int J Eng Sci 48, 1325–1331. [CrossRef] [PubMed] [Google Scholar]
- Andersson M, Karlsson M (2021) Characterization of anisotropic turbulence behavior in pulsatile blood flow. Biomech Model Mechanobiol 20, 491–506. [CrossRef] [PubMed] [Google Scholar]
- Faghih MM, Sharp MK (2019) Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol 18, 845–881. [CrossRef] [PubMed] [Google Scholar]
- Morshed KN, Bark D Jr, Forleo M, Dasi LP (2014) Theory to predict shear stress on cells in turbulent blood flow. PLoS One 9, e105357. [CrossRef] [PubMed] [Google Scholar]
- Hansbro SD, Sharpe DA, Catchpole R, et al. (1999) Haemolysis during cardiopulmonary bypass: an in vivo comparison of standard roller pumps, nonocclusive roller pumps and centrifugal pumps. Perfusion 14, 3–10. [CrossRef] [PubMed] [Google Scholar]
- Jahren SE, Jenni H, Roesch Y, et al. (2021) The impact of roller pump-assisted cardiotomy suction unit on hemolysis. Artif Organs 45, 46–54. [CrossRef] [PubMed] [Google Scholar]
- Klein M, Dauben HP, Schulte HD, Gams E (1998) Centrifugal pumping during routine open heart surgery improves clinical outcome. Artif Organs 22, 326–336. [CrossRef] [PubMed] [Google Scholar]
- Nishinaka T, Nishida H, Endo M, Miyagishima M, Ohtsuka G, Koyanagi H (1996) Less blood damage in the impeller centrifugal pump: a comparative study with the roller pump in open heart surgery. Artif Organs 20, 707–710. [CrossRef] [Google Scholar]
- Saczkowski R, Maklin M, Mesana T, Boodhwani M, Ruel M (2012) Centrifugal pump and roller pump in adult cardiac surgery: a meta-analysis of randomized controlled trials. Artif Organs 36, 668–676. [CrossRef] [PubMed] [Google Scholar]
- Iwanowski I, Bockhaus J, Richardt P, Kutschka I, Hanekop GG, Friedrich MG (2022) A new evaluation Q-factor to be calculated for suction geometries as a basis for smooth suction in the operating field to ensure the highest possible blood integrity for retransfusion systems. J Extra Corpor Technol 54, 107–114. [PubMed] [Google Scholar]
- Friedrich MG, Tirilomis T, Kollmeier JM, Wang Y, Hanekop GG (2018a) Modifications of surgical suction tip geometry for flow optimisation: influence on suction-induced noise pollution. Surg Res Pract 2018, 3074819. [PubMed] [Google Scholar]
- Jeun J, Nichols JW, Jovanović MR (2016) Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys Fluids 28, 047101. [CrossRef] [Google Scholar]
- Tam CKW (2019) A phenomenological approach to jet noise: the two-source model. Philos Trans A Math Phys Eng Sci 377, 20190078. [PubMed] [Google Scholar]
- Yao TL, Liu HF, Xu JL, Li WF (2014) The deterministic chaos and random noise in turbulent jet. Chaos 24, 023132. [CrossRef] [PubMed] [Google Scholar]
- Dooley PN, Quinlan NJ (2009) Effect of eddy length scale on mechanical loading of blood cells in turbulent flow. Ann Biomed Eng 37, 2449–2458. [CrossRef] [PubMed] [Google Scholar]
- Kameneva MV, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M (2004) Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J 50, 418–423. [CrossRef] [PubMed] [Google Scholar]
- Bryant DJ, Payne JA, Firmin DN, Longmore DB (1984) Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 8, 588–593. [CrossRef] [PubMed] [Google Scholar]
- Nasiraei-Moghaddam A, Behrens G, Fatouraee N, Agarwal R, Choi ET, Amini AA (2004) Factors affecting the accuracy of pressure measurements in vascular stenoses from phase-contrast MRI. Magn Reson Med 52, 300–309. [CrossRef] [PubMed] [Google Scholar]
- Oshinski JN, Ku DN, Pettigrew RI (1995) Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels. Magn Reson Med 33, 193–199. [CrossRef] [PubMed] [Google Scholar]
- Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T (2006) Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med 56, 850–858. [CrossRef] [PubMed] [Google Scholar]
- Dyverfeldt P, Gardhagen R, Sigfridsson A, Karlsson M, Ebbers T (2009) On MRI turbulence quantification. Magn Reson Imaging 27, 913–922. [CrossRef] [PubMed] [Google Scholar]
- Klosowski J, Frahm J (2017) Image denoising for real-time MRI. Magn Reson Med 77, 1340–1352. [CrossRef] [PubMed] [Google Scholar]
- Li H, Huang B, Wu M (2019) Experimental and numerical investigations on the flow characteristics within hydrodynamic entrance regions in microchannels. Micromachines (Basel) 10. [PubMed] [Google Scholar]
- Christiansen EB, Lemmon HE (1965) Entrance region flow. AIChE J 11, 995–999. [CrossRef] [Google Scholar]
- Aydin S, Cekmecelioglu D, Celik S, Yerli I, Kirali K (2020) The effect of vacuum-assisted venous drainage on hemolysis during cardiopulmonary bypass. Am J Cardiovasc Dis 10, 473–478. [PubMed] [Google Scholar]
- Blackshear PL Jr, Dorman FD, Steinbach JH, Maybach EJ, Singh A, Collingham RE (1966) Shear, wall interaction and hemolysis. Trans Am Soc Artif Intern Organs 12, 113–120. [PubMed] [Google Scholar]
- Kwak JG, Lee J, Park M, Seo YJ, Lee CH (2017) Hemolysis during open-heart surgery with vacuum-assisted venous drainage at different negative pressures in pediatric patients weighing less than 10 kilograms. World J Pediatr Congenit Heart Surg 8, 161–165. [CrossRef] [PubMed] [Google Scholar]
- Pohlmann JR, Toomasian JM, Hampton CE, Cook KE, Annich GM, Bartlett RH (2009) The relationships between air exposure, negative pressure, and hemolysis. Asaio J 55, 469–473. [CrossRef] [PubMed] [Google Scholar]
- Blackshear PL Jr, Dorman FD, Steinbach JH (1965) Some mechanical effects that influence hemolysis. Trans Am Soc Artif Intern Organs 11, 112–117. [CrossRef] [Google Scholar]
- Bortot M, Ashworth K, Sharifi A, et al. (2019) Turbulent flow promotes cleavage of VWF (von Willebrand Factor) by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif, member 13). Arterioscler Thromb Vasc Biol 39, 1831–1842. [CrossRef] [PubMed] [Google Scholar]
- Okhota S, Melnikov I, Avtaeva Y, Kozlov S, Gabbasov Z (2020) Shear stress-induced activation of von Willebrand factor and cardiovascular pathology. Int J Mol Sci. 21. https://doi.org/10.3390/ijms21207804. [CrossRef] [PubMed] [Google Scholar]
- Boehning F, Mejia T, Schmitz-Rode T, Steinseifer U (2014) Hemolysis in a laminar flow-through Couette shearing device: an experimental study. Artif Organs 38, 761–765. [PubMed] [Google Scholar]
- Ding J, Niu S, Chen Z, Zhang T, Griffith BP, Wu ZJ (2015) Shear-induced hemolysis: species differences. Artif Organs 39, 795–802. [CrossRef] [PubMed] [Google Scholar]
- Horobin JT, Sabapathy S, Simmonds MJ (2017) Repetitive supra-physiological shear stress impairs red blood cell deformability and induces hemolysis. Artif Organs 41, 1017–1025. [CrossRef] [PubMed] [Google Scholar]
- Jhun CS, Siedlecki C, Xu L, et al. (2019) Stress and exposure time on von Willebrand factor degradation. Artif Organs 43, 199–206. [CrossRef] [PubMed] [Google Scholar]
- Krisher JA, Malinauskas RA, Day SW (2022) The effect of blood viscosity on shear-induced hemolysis using a magnetically levitated shearing device. Artif Organs 46, 1027–1039. [CrossRef] [PubMed] [Google Scholar]
- Simmonds MJ, Meiselman HJ (2016) Prediction of the level and duration of shear stress exposure that induces subhemolytic damage to erythrocytes. Biorheology 53, 237–249. [Google Scholar]
- El-Sabbagh AM, Toomasian CJ, Toomasian JM, Ulysse G, Major T, Bartlett RH (2013) Effect of air exposure and suction on blood cell activation and hemolysis in an in vitro cardiotomy suction model. ASAIO J 59, 474–479. [CrossRef] [PubMed] [Google Scholar]
- Arensdorf J, Petitt H, Holt D (2018) Improving hemolysis levels associated with cardiotomy suction. Perfusion 33, 612–617. [CrossRef] [PubMed] [Google Scholar]
- Svitek V, Lonsky V, Anjum F (2010) Pathophysiological aspects of cardiotomy suction usage. Perfusion 25, 147–152. [CrossRef] [PubMed] [Google Scholar]
- Wright G (2001) Haemolysis during cardiopulmonary bypass: update. Perfusion 16, 345–351. [CrossRef] [PubMed] [Google Scholar]
- Rygg IH (1973). The design and development of heart-lung machine. Studies in extracorporeal circulation. Kobenhaven, Arhus, Odense: Fadls Forlag. [Google Scholar]
- Jegger D, Horisberger J, Jachertz M, et al. (2007) A novel device for reducing hemolysis provoked by cardiotomy suction during open heart cardiopulmonary bypass surgery: a randomized prospective study. Artif Organs 31, 23–30. [CrossRef] [PubMed] [Google Scholar]
- DeWachter D, Verdonk P (2002) Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 26, 576–582. [CrossRef] [PubMed] [Google Scholar]
- Grigioni M, Morbiducci U, D’Avenio G, Benedetto GD, Del Gaudio C (2005) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4, 249–260. [CrossRef] [PubMed] [Google Scholar]
- Goubergrits L, Affeld K (2004) Numerical estimation of blood damage in artificial organs. Artif Organs 28, 499–507. [CrossRef] [PubMed] [Google Scholar]
- Paul R, Apel J, Klaus S, Schugner F, Schwindke P, Reul H (2003) Shear stress related blood damage in laminar couette flow. Artif Organs 27, 517–529. [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Mondal NK, Ding J, Koenig SC, Slaughter MS, Wu ZJ (2016) Paradoxical effect of nonphysiological shear stress on platelets and von Willebrand factor. Artif Organs 40, 659–668. [CrossRef] [PubMed] [Google Scholar]
- Chen Z, Tran D, Li T, Arias K, Griffith BP, Wu ZJ (2020) The role of a disintegrin and metalloproteinase proteolysis and mechanical damage in nonphysiological shear stress-induced platelet receptor shedding. ASAIO J 66, 524–531. [CrossRef] [PubMed] [Google Scholar]
- Nuttall GA, Henderson N, Quinn M, et al. (2006) Excessive bleeding and transfusion in a prior cardiac surgery is associated with excessive bleeding and transfusion in the next surgery. Anesth Analg 102, 1012–1017. [CrossRef] [PubMed] [Google Scholar]
- Sheriff J, Soares JS, Xenos M, Jesty J, Slepian MJ, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41, 1279–1296. [CrossRef] [PubMed] [Google Scholar]
- Waters JH, Williams B, Yazer MH, Kameneva MV (2007) Modification of suction-induced hemolysis during cell salvage. Anesth Analg 104, 684–687. [CrossRef] [PubMed] [Google Scholar]
- Goubergrits L, Osman J, Mevert R, Kertzscher U, Pothkow K, Hege HC (2016) Turbulence in blood damage modeling. Int J Artif Organs 39, 160–165. [CrossRef] [PubMed] [Google Scholar]
- Hellström L, Zlatinov M, Cao G, Smits A (2013) Turbulent pipe flow through a 90° bend. J Fluid Mech 735, R7. [CrossRef] [Google Scholar]
- Chowdhury RR, Biswas S, Alam MM, Sadrul Islam AKM (2016) Turbulent flow analysis on bend and downstream of the bend for different curvature ratio. AIP Conf Proc 1754, 040020. [CrossRef] [Google Scholar]
- Schneider TM, Eckhardt B, Yorke JA (2007) Turbulence transition and the edge of chaos in pipe flow. Phys Rev Lett 99, 034502. [CrossRef] [PubMed] [Google Scholar]
- Kerswell RR (2005) Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17–R44. [CrossRef] [Google Scholar]
- Barkley D, Song B, Mukund V, Lemoult G, Avila M, Hof B (2015) The rise of fully turbulent flow. Nature 526, 550–553. [CrossRef] [PubMed] [Google Scholar]
- Liu H, Duan J, Gu K, et al. (2022) Slug flow hydrodynamics modeling for gas-liquid two-phase flow in a pipe. Energies 15, 533. [CrossRef] [Google Scholar]
- Aldea GS, Soltow LO, Chandler WL, et al. (2002) Limitation of thrombin generation, platelet activation, and inflammation by elimination of cardiotomy suction in patients undergoing coronary artery bypass grafting treated with heparin-bonded circuits. J Thorac Cardiovasc Surg 123, 742–755. [CrossRef] [PubMed] [Google Scholar]
- Formica F, Broccolo F, Martino A, et al. (2009) Myocardial revascularization with miniaturized extracorporeal circulation versus off pump: evaluation of systemic and myocardial inflammatory response in a prospective randomized study. J Thorac Cardiovasc Surg 137, 1206–1212. [CrossRef] [PubMed] [Google Scholar]
- Lau K, Shah H, Kelleher A, Moat N (2007) Coronary artery surgery: cardiotomy suction or cell salvage? J Cardiothorac Surg 2, 46. [CrossRef] [PubMed] [Google Scholar]
- Mazzei V, Nasso G, Salamone G, Castorino F, Tommasini A, Anselmi A (2007) Prospective randomized comparison of coronary bypass grafting with minimal extracorporeal circulation system (MECC) versus off-pump coronary surgery. Circulation 116, 1761–1767. [CrossRef] [PubMed] [Google Scholar]
- Miyagi J, Funabashi N, Suzuki M, et al. (2007) Predictive indicators of deep venous thrombosis and pulmonary arterial thromboembolism in 54 subjects after total knee arthroplasty using multislice computed tomography in logistic regression models. Int J Cardiol 119, 90–94. [CrossRef] [PubMed] [Google Scholar]
- Sakwa MP, Emery RW, Shannon FL, et al. (2009) Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial. J Thorac Cardiovasc Surg 137, 481–485. [CrossRef] [PubMed] [Google Scholar]
- Zangrillo A, Garozzo FA, Biondi-Zoccai G, et al. (2010) Miniaturized cardiopulmonary bypass improves short-term outcome in cardiac surgery: a meta-analysis of randomized controlled studies. J Thorac Cardiovasc Surg 139, 1162–1169. [CrossRef] [PubMed] [Google Scholar]
- Amand T, Pincemail J, Blaffart F, Larbuisson R, Limet R, Defraigne JO (2002) Levels of inflammatory markers in the blood processed by autotransfusion devices during cardiac surgery associated with cardiopulmonary bypass circuit. Perfusion 17, 117–123. [CrossRef] [PubMed] [Google Scholar]
- Kincaid EH, Jones TJ, Stump DA, et al. (2000) Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann Thorac Surg 70, 1296–1300. [CrossRef] [PubMed] [Google Scholar]
- Skrabal CA, Khosravi A, Choi YH, et al. (2006) Pericardial suction blood separation attenuates inflammatory response and hemolysis after cardiopulmonary bypass. Scand Cardiovasc J 40, 219–223. [CrossRef] [PubMed] [Google Scholar]
- Svenmarker S, Engström KG (2003) The inflammatory response to recycled pericardial suction blood and the influence of cell-saving. Scand Cardiovasc J 37, 158–164. [CrossRef] [PubMed] [Google Scholar]
- Wang G, Bainbridge D, Martin J, Cheng D (2009) The efficacy of an intraoperative cell saver during cardiac surgery: a meta-analysis of randomized trials. Anesth Analg 109, 320–330. [CrossRef] [PubMed] [Google Scholar]
- Westerberg M, Gabel J, Bengtsson A, Sellgren J, Eidem O, Jeppsson A (2006) Hemodynamic effects of cardiotomy suction blood. J Thorac Cardiovasc Surg 131, 1352–1357. [CrossRef] [PubMed] [Google Scholar]
- Budde H, Riggert J, Vormfelde S, Tirilomis T, Friedrich MG (2019) The effect of a novel turbulence-controlled suction system in the prevention of hemolysis and platelet dysfunction in autologous surgery blood. Perfusion 34, 58–66. [CrossRef] [PubMed] [Google Scholar]
- Clague CT, Blackshear PL Jr (1995) A low-hemolysis blood aspirator conserves blood during surgery. Biomed Instrum Technol 29, 419–424. [PubMed] [Google Scholar]
- Friedrich MG, Bougioukas I, Wenig P, Vormfelde S, Tirilomis T (2018) New device for intraoperative blood suction avoiding turbulences. BMJ Innov 4, 91–97. [CrossRef] [Google Scholar]
- Müller XM, Tevaearai HT, Horisberger J, Augstburger M, Boone Y, von Segesser LK (2001) Smart suction device for less blood trauma: a comparison with Cell Saver. Eur J Cardiothorac Surg 19, 507–511. [CrossRef] [PubMed] [Google Scholar]
- Tevaearai HT, Müller XM, Horisberger J, et al. (1998) In situ control of cardiotomy suction reduces blood trauma. ASAIO J 44, M380–M383. [CrossRef] [PubMed] [Google Scholar]
- Riley JB (2012) Pump sucker discipline. J Extra Corpor Technol 44, 81–99. [PubMed] [Google Scholar]
- Fabre J, Liné A. Slug flow. https://thermopedia.com/content/38/. [Google Scholar]
- Fabre J, Grenier P, Gadoin E (1993). Evolution of slug flow in long pipe. In: Multi Phase Production. Wilson A, Editors. London: MEP, pp. 165–177. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.