Issue |
J Extra Corpor Technol
Volume 36, Number 1, March 2004
|
|
---|---|---|
Page(s) | 36 - 43 | |
DOI | https://doi.org/10.1051/ject/200436136 | |
Published online | 08 August 2023 |
The Rheological Effects of X-Coating™ with Albumin and Hetastarch on Blood during Cardiopulmonary Bypass
Division of Clinical Perfusion Education, School of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska
* Address correspondence to: Bernadette Nutter, MPS, Division of Clinical Perfusion Education, University of Nebraska Medical Center, Box 985155, Omaha, NE 68198-5155. E-mail: bnutter@unmc.edu
Cardiopulmonary bypass (CPB) exposes blood to artificial surfaces, resulting in mechanical damage to the formed elements of the blood. The purpose of this study was to examine the effect of poly(2-methoxyethylacrylate) coating (PMEA, X-Coating™) on coagulation and inflammation under various prime conditions. An in vitro analysis was conducted utilizing fresh whole human blood (2 units) and a CPB circuit (n 18) consisting of a venous reservoir, oxygenator, and arterial filter. Nine nontreated circuits were used in a control group (CTR) and an equal number of tip-to-tip PMEA circuits for treatment (TRT). Each group was divided into three subgroups based upon prime: crystalloid, hetastarch (6%), and albumin (5%). CPB was conducted with a hematocrit 30% ± 2, temperature 37°C ± 1, and a flow of 4L/min. Samples were collected at 0, 60, 120, and 240 minute intervals. Endpoint measurements included thromboelastograph index (TI), and markers of inflammation and coagulation. The TI was significantly depressed in both groups when hetastarch was used in the prime. The TRT had significantly higher TI levels in both the crystalloid (0.3 ± 0.1 vs. −3.3±[1.2, P < .05) and albumin (0.6 ± 0.2 vs−3.9± −1.1. P < .03) subgroups compared to CTR groups. Platelet count was significantly higher in TRT as compared to CTR groups, except for both hetastarch groups. SEM demonstrated significant fibrin deposition on nontreated circuitry but little to no detection in the TRT group. In conclusion, both surface coating and prime components significantly effect coagulation, with PMEA circuits resulting in more favorable preservation of function.
Key words: X-coating (PMEA) / protein adsorption / biocompatibility / colloid oncotic pressure
© 2004 AMSECT
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.