Free Access
Issue
J Extra Corpor Technol
Volume 38, Number 2, June 2006
Page(s) 128 - 133
DOI https://doi.org/10.1051/ject/200638128
Published online 15 June 2006
  1. Shapiro BA, Harrison RA, Walton JR. Clinical Application of Blood Gases, 3rd ed. Chicago, IL: Year Book Medical Publishers; 1982: 29–40. [Google Scholar]
  2. Carr JJ, Brown JM. An Introduction to Biomedical Equipment Technology. New York: John Wiley & Sons; 1981:262–281. [Google Scholar]
  3. Hedlund KD, Oen S, LaFance L. Clinical experience with the Diametrics IRMA blood analysis system. Perfusion. 1997;12:27–30. [CrossRef] [PubMed] [Google Scholar]
  4. Davis RF, Dobbs JL, Casson H. Conduct and monitoring of cardiopulmonary bypass. In: Gravlee GP, Davis RF, Utley JR, eds. Cardiopulmonary Bypass: Principals and Practice. Baltimore, MD: Williams & Wilkins; 1993:596. [Google Scholar]
  5. Trowbrideg CC, Vasquez M, Stammers AH, et al. The effects of continuous blood gas monitoring during cardiopulmonary bypass: A prospective, randomized study—Part 2. J Extra Corpor Technol. 2000;3:129–37. [Google Scholar]
  6. Mejack B, Stammers A, Rauch E, et al. A retrospective study on perfusion accidents and safety devices. Perfusion. 2000;15:161–8. [CrossRef] [PubMed] [Google Scholar]
  7. Stammers A, Mejak B, Ranch E, et al. Factors affecting perfusionist’s decisions on equipment utilization: Results of a United States survey. J Extra Corpor Technol. 2000;32:4–10. [Google Scholar]
  8. Trowbridge CC, Vaqquez M, Stammers AH. The effects of continuous blood gas monitoring during cardiopulmonary bypass: A prospective, randomized study—Part 1. J Extra Corpor Technol. 2000;3:120–8. [Google Scholar]
  9. Harloff M. Continuous monitoring using the CDI system 300. J Extra Corpor Technol. 1992;23:27–30. [Google Scholar]
  10. Southworth R, Sutton R, Mize S, et al. Clinical evaluation of a new in-line continuous blood gas monitor. J Extra Corpor Technol. 1998;30:166–70. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Bennett J, Cervantes C, Pacheco S. Point-of-care testing: Inspection preparedness. Perfusion. 2000;15:137–42. [CrossRef] [PubMed] [Google Scholar]
  12. Weatherall MS, Sherry KM. An evaluation of the Spuncrit infrared analyzer for measurement of hematocrit. Clin Lab Haem. 1997;19:183–86. [CrossRef] [Google Scholar]
  13. Sorell-Rashi LA, Tomasic M. Evaluation of automated methods of measuring hemoglobin and hematocrit in horses. AJVR. 1998;59:1519–22. [Google Scholar]
  14. Ware JH, Mosteller F, et al. P values. In: Bailar JC, Mosteller F, eds. Medical Uses of Statistics, 2nd ed. Boston, MA: NEJM Books; 1992:196–200. [Google Scholar]
  15. Rosner B. Hypothesis testing: two-sample inference. In: Fundamentals of Biostatistics, 4th ed. Belmont: Duxbury Press; 1995:253–57. [Google Scholar]
  16. Leaverton P. Statistical inference. In: Statistical Inference, 2nd ed. Boston, MA: Little, Brown and Company Inc.; 1978:51–61. [Google Scholar]
  17. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10. [CrossRef] [Google Scholar]
  18. Rosner B. Descriptive statistics. In: Purrington L, Burger J, Kugushev A, eds. Fundamentals of Biostatistics, 4th ed. Belmont: Wads-worth Publishing;1995:253–7. [Google Scholar]
  19. Walton HG, Boucher DM, Marroquin R. Comparison of blood gas and electrolyte test results from the gem-premier and ABL-70 versus a conventional laboratory analyzer. J Extra Corpor Technol. 2003;35:24–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Hoper SM, Nadeau FL, Sundra M, et al. Effect of protein on hemoglobin and hematocrit assay with a conductivity-based point-of-care testing device: Comparison with optical methods. Ann Clin Lab Sci. 2004;34:75–82. [Google Scholar]
  21. McMahon DJ, Carpenter RL. A comparison of conductivity-based hematocrit determinations with conventional laboratory methods in autologous blood transfusions. Anesth Analg. 1990;71:541–4. [Google Scholar]
  22. Stott RW, Hortin GL, Wilhit TP, et al. Analytical artifacts in hematocrit measurements by whole blood chemistry analyzers. Clin Chem. 1995;41:306–11. [CrossRef] [PubMed] [Google Scholar]
  23. McNulty SE, Sharkey SJ, Asam B, et al. Evaluation of STAT-CRIT hematocrit determination in comparison to Coulter and centrifuge: The effects of isotonic hemodilution and albumin administration. Anesth Analg. 1993;76:830–4. [Google Scholar]
  24. Cha K, Faris RG, Brown EF, Wilmore DW. An electronic method for rapid measurement of hematocrit in blood samples. Physiol Meas. 1994;15:129–37. [CrossRef] [PubMed] [Google Scholar]
  25. Mueller J, Warnecke H, Grauhan O, et al. Electrical impedance recording: a noninvasive method of rejection diagnosis. J Extra Corpor Technol. 1992;23:49–55. [Google Scholar]
  26. Hubert CI. Electric Circuits AC/DC, An Integrated Approach. New York: MmcGraw-Hill, Inc.; 1982: 229–30. [Google Scholar]
  27. Kane JW. Life Science Physics. New York: John Wiley & Sons; 1978. [Google Scholar]
  28. McNulty SE, Sharkey SJ, Schieren H. Bedside hemoglobin measurements: sensitivity to changes in serum protein and electrolytes. J Clin Monit. 1994;10:377–81. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.