Free Access
Issue
J Extra Corpor Technol
Volume 38, Number 2, June 2006
Page(s) 144 - 153
DOI https://doi.org/10.1051/ject/200638144
Published online 15 June 2006
  1. Tassani P, Schad H, Winkler C, et al. Capillary leak syndrome after cardiopulmonary bypass in elective, uncomplicated coronary artery bypass grafting operations: Does it exist? J Thorac Cardiovasc Surg. 2002;123:735–41. [CrossRef] [Google Scholar]
  2. Sever K, Tansel SK, Basaran M, et al. The benefits of continuous ultrafiltration in pediatric cardiac surgery. Scan Cardiovasc J. 2004;38:307–11. [CrossRef] [PubMed] [Google Scholar]
  3. Hamada Y, Kawachi K, Tsunooka N, et al. Capillary leakage in cardiac surgery with cardiopulmonary bypass. Asian Cardiovasc Thorac Ann. 2004;12:193–7. [CrossRef] [PubMed] [Google Scholar]
  4. Zhang S, Wang S, Yao S. Evidence for development of capillary leak syndrome associated with cardiopulmonary bypass in pediatric patients with homozygous C4A null phenotype. Anesthesiology. 2004;100:1387–93. [CrossRef] [PubMed] [Google Scholar]
  5. Mojcik CF, Levy JH. Aprotinin and the systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg. 2001;71:745–54. [CrossRef] [Google Scholar]
  6. Gray DT, Veenstra DL. Comparative economic analyses of minimally invasive direct coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2003;125:618–24. [CrossRef] [Google Scholar]
  7. Stauder NI, Fenchel M, Stauder H, et al. Assessment of minimally invasive direct coronary artery bypass grafting of the left internal thoracic artery by means of magnetic resonance imaging. J Thorac Cardiovasc Surg. 2005;129:607–14. [CrossRef] [Google Scholar]
  8. Izutani H, Gill IS. Acute graft failure caused by an intracoronary shunt in minimally invasive direct coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003;125:723–4. [CrossRef] [Google Scholar]
  9. Zimarino M, Gallina S, Di Fulvio M, et al. Intraoperative ischemia and long-term events after minimally invasive coronary surgery. Ann Thorac Surg. 2004;78:135–41. [CrossRef] [Google Scholar]
  10. Remadi JP, Marticho P, Butoi I, et al. Clinical experience with miniextracorporeal circulation system: an evolution or a revolution? Ann Thorac Surg. 2004;77:2172–5. [CrossRef] [Google Scholar]
  11. Remadi JP, Rakotoarivello P, Marticho P, et al. Aortic valve replacement with the minimal extracorporeal circulation (Jostra MECC System) versus standard cardiopulmonary bypass: A randomized prospective trial. J Thorac Cardiovasc Surg. 2004;128:436–41. [CrossRef] [Google Scholar]
  12. Eising GP, Pfauder M, Niemeyer M, et al. Retrograde autologous priming: is it useful in elective on-pump coronary artery bypass surgery? Ann Thorac Surg. 2003;75:23–7. [CrossRef] [Google Scholar]
  13. Baufreton C, Brux J, Binuani P, et al. A combined approach for improving cardiopulmonary bypass in coronary artery surgery: A pilot study. Perfusion. 2002;17:407–13. [CrossRef] [PubMed] [Google Scholar]
  14. Banbury MK, White JA, Blackstone EH, et al. Vacuum-assisted venous return reduces blood usage. J Thorac Cardiovasc Surg. 2003;126:680–87. [CrossRef] [Google Scholar]
  15. Munster K, Andersen U, Mikkelsen J, Pettersson G. Vacuum assisted venous drainage (VAVD). Perfusion. 1999;14:419–23. [CrossRef] [PubMed] [Google Scholar]
  16. Kurusz M, Butler B. Bubbles and bypass: an update. Perfusion. 2004;19:S49–55. [CrossRef] [PubMed] [Google Scholar]
  17. Tallman RD, Dumond M, Brown D. Inflammatory mediator removal by zero balance ultrafiltration during cardiopulmonary bypass. Perfusion. 2002;17:111–5. [CrossRef] [PubMed] [Google Scholar]
  18. de Baar M, Diephuis JC, Moons KG, et al. The effect of zero-balanced ultra_filtration during cardiopulmonary bypass onS100b release and cognitive function. Perfusion. 2003;18:9–14. [CrossRef] [PubMed] [Google Scholar]
  19. Wang W, Huang HM, Zhu DM, et al. Modified ultrafiltration in paediatric cardiopulmonary bypass. Perfusion. 1998;13:304–10. [CrossRef] [PubMed] [Google Scholar]
  20. Bando K, Turrentine W, Vijay P, et al. Effect of modified ultrafiltration in high-risk patients undergoing operations for congenital heart disease. Ann Thorac Surg. 1998;66:821–7. [CrossRef] [Google Scholar]
  21. Friesen RH, Campbell DN, Clarke DR, Tornabene MA. Modified ultrafiltration attenuates dilutional coagulopathy in pediatric open heart operations. Ann Thorac Surg. 1997;64:1787–9. [CrossRef] [Google Scholar]
  22. Ungerleider RM. Effects of cardiopulmonary bypass and use of modified ultrafiltration. Ann Thorac Surg. 1998;65:S35–9. [CrossRef] [Google Scholar]
  23. Kiziltepe U, Uysalel A, Corapcioglu T, et al. Effects of combined conventional and modified ultrafiltration in adult patients. Ann Thorac Surg. 2001;71:684–93. [CrossRef] [Google Scholar]
  24. Babka R, Petress J, Briggs R, et al. Conventional haemofiltration during routine coronary bypass surgery. Perfusion. 1997;12:187–92. [CrossRef] [PubMed] [Google Scholar]
  25. Thompson LD, McElhinney DB, Findlay P, et al. A prospective randomized study comparing volume-standardized modified and conventional ultrafiltration in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2001;122:220–8. [CrossRef] [Google Scholar]
  26. Daggett CW, Lodge AJ, Scarborough JE, et al. Modified Ultrafiltration versus conventional ultrafiltration: a randomized prospective study. J Thorac Cardiovasc Surg. 1998;115:341–2. [Google Scholar]
  27. Chew M. Does modified ultrafiltration reduce the systemic inflammatory response to cardiac surgery with cardiopulmonary bypass? Perfusion. 2004;19:S57–60. [CrossRef] [PubMed] [Google Scholar]
  28. Chew R, Brix-Christensen V. Effect of modified ultrafiltration on the inflammatory response in paediatric open-heart surgery: A prospective, randomized study. Perfusion. 2002;17:327–33. [CrossRef] [PubMed] [Google Scholar]
  29. Wand M, Chiu I. Efficacy of ultrafiltration in removing inflammatory mediators during pediatric cardiac operations. Soc Thorac Surg. 1996;61:651–6. [CrossRef] [Google Scholar]
  30. Shimpo H, Shimamoto A, Sawamura Y, et al. Ultrafiltration of the priming blood before cardiopulmonary bypass attenuated inflammatory response and improves postoperative clinical course in pediatric patients. Shock. 2001;1(suppl 16):51–4. [CrossRef] [PubMed] [Google Scholar]
  31. Journois D, Pouard P, Greeley WJ, et al. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Effects on hemostasis, cytokines, and complement components. Anesthesiology. 1994;81:1181–9. [CrossRef] [PubMed] [Google Scholar]
  32. Hoffmann JN, Hartl WH, Deppisch R, et al. Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylatoxin and cytokines in human sepsis. Intensive Med. 1996;22:1360–7. [CrossRef] [PubMed] [Google Scholar]
  33. Chertow GM, Levy EM, Hammermeister KE, et al. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104:343–8. [CrossRef] [Google Scholar]
  34. Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107:1489–95. [CrossRef] [Google Scholar]
  35. Provenchere S, Plantefeve G, Hufnagel G, et al. Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: Incidence, risk factor, and effect on clinical outcome. Anesth Analg. 2003;96:1258–64. [CrossRef] [PubMed] [Google Scholar]
  36. Ostermann ME, Taube D, Morgan CJ, Evans TW. Acute renal failure following cardiopulmonary bypass: a changing picture. Intensive Care Med. 2000;26:565–71. [CrossRef] [PubMed] [Google Scholar]
  37. Corwin HL, Sprague SM, DeLaria GA, Norusis MJ. Acute renal failure associated with cardiac operations. A case-control study. J Thorac Cardiovasc Surg. 1989;98:1107–12. [CrossRef] [Google Scholar]
  38. Waloth BH, Albetini B. Ultrafiltration in cardiac surgery. J Extra Corpor Technol. 1984;16:68–72. [Google Scholar]
  39. Huang H, Yao T, Wang W, et al. Continuous ultrafiltration attenuates the pulmonary injury that follows open heart surgery with cardiopulmonary bypass. Ann Thorac Surg. 2003;76:136–40. [CrossRef] [Google Scholar]
  40. Nagashima M, Shin’oka T, Nollert G, et al. High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest. Circulation. 1998;98:378–84. [CrossRef] [PubMed] [Google Scholar]
  41. Kiziltepe U. Effects of combined conventional and modified ultrafiltration in adult patients. Ann Thorac Surg. 2001;71:684–93. [CrossRef] [Google Scholar]
  42. Portela F, Pensado A, Sanchez A, et al. A simple technique to perform combined ultrafiltration. Ann Thorac Surg. 1999;67:859–61. [CrossRef] [Google Scholar]
  43. Klineberg PL, Kam CA, Johnson DC, et al. Hematocrit and blood volume control during cardiopulmonary bypass with the use of hemofiltration. Anesthesiology. 1984;60:478–80. [CrossRef] [PubMed] [Google Scholar]
  44. Journois D, Israel-Biet D, Pouard P, et al. High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology. 1996;85:965–76. [CrossRef] [PubMed] [Google Scholar]
  45. Wang MJ, Chiu IS, Hsu CM, et al. Efficacy of ultrafiltration in removing inflammatory mediators during pediatric cardiac operations. Ann Thorac Surg. 1996;61:651–6. [CrossRef] [Google Scholar]
  46. Onoe M, Magara T, Yamamoto Y, Nojima T. Modified ultrafiltration removes serum interleukin-8 in adult cardiac surgery. Perfusion. 2001;16:37–42. [CrossRef] [PubMed] [Google Scholar]
  47. Toraman F, Evrenkaya S, Yuce M, et al. Highly positive intraoperative fluid balance during cardiac surgery is associated with adverse outcome. Perfusion. 2004;19:85–91. [CrossRef] [PubMed] [Google Scholar]
  48. Koller ME, Bert J, Segadal L, Reed RK. Estimation of total body fluid shifts between plasma and interstitium in man during extracorporeal circulation. Acta Anaesthesiol Scand. 1992;36:255–59. [CrossRef] [Google Scholar]
  49. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. [CrossRef] [PubMed] [Google Scholar]
  50. Vervoort G, Willems HL, Wetzels JF. Assessment of glomerular filtration rate in health subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation. Nephrol Dial Transplant. 2002;17:1909–13. [CrossRef] [PubMed] [Google Scholar]
  51. Fournier A, Achard JM. Mnemotechnical note on the use of Cockcroft creatinine clearance formula for the validation of a 24-h urine collection. Nephrol Dial Transplant. 2000;15:1677–78. [CrossRef] [PubMed] [Google Scholar]
  52. Spinler SA, Nawarskas JJ, Boyce EG, et al. Predictive performance of ten equations for estimating creatinine clearance in cardiac patients. Ann Pharmacother. 1998;32:1275–83. [CrossRef] [PubMed] [Google Scholar]
  53. Weerasinghe A, Athanasiou T, Al-Ruzzeh S, et al. Functional renal outcome in on-pump and off-pump coronary revascularization: A propensity-based analysis. Ann Thorac Surg. 2005;79:1577–83. [CrossRef] [Google Scholar]
  54. Mangano CM, Diamondstone LS, Ramsay JG, et al. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resources utilization. Ann Intern Med. 1998;128:194–203. [CrossRef] [PubMed] [Google Scholar]
  55. Pathi VL, Morrison J, MacPhaden A, et al. Alterations in renal microcirculation during cardiopulmonary bypass. Ann Thorac Surg. 1998;65:993–8. [CrossRef] [Google Scholar]
  56. Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107:1489–95. [CrossRef] [Google Scholar]
  57. Ascione R, Lloyd CT, Underwood MJ, et al. On-pump versus off-pump coronary revascularization: evaluation of renal function. Ann Thorac Surg. 1999;68:493–8. [CrossRef] [Google Scholar]
  58. Gamoso MG, Phillips-Bute B, Landolfo KP, et al. Off-pump versus on-pump coronary artery bypass surgery and post-operative renal dysfunction. Anaesth Analg. 2000;91:1080–4. [Google Scholar]
  59. Stallwood MI, Grayson AD, Mills K, Scawn ND. Acute Renal Failure in Coronary Artery Bypass Surgery: Independent Effect of Cardiopulmonary Bypass. Ann Thorac Surg. 2004;77:968–72. [CrossRef] [Google Scholar]
  60. Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129:391–400. [CrossRef] [Google Scholar]
  61. Yeboah ED, Petrie A, Pead JL. Acute renal failure and open heart surgery. BMJ. 1972;1:415–8. [CrossRef] [PubMed] [Google Scholar]
  62. Krian A. Incidence, prevention, and treatment of acute renal failure following cardiopulmonary bypass. Int Anesthesiol Clin. 1976;14:87–101. [CrossRef] [PubMed] [Google Scholar]
  63. Chen Y, Berglin E, Belboul A, Roberts D. A mathematical analysis of hemorheological changes during heart valve replacement. J Cardiovasc Surg (Torino). 2000;41:37–43. [PubMed] [Google Scholar]
  64. Hellberg PO, Bayati A, Kallskog O, Wolgast M. Red cell trapping after ischemia and long-term kidney damage. Influence of hematocrit. Kidney Int. 1990;37:1240–7. [CrossRef] [Google Scholar]
  65. Defoe G, Ross C, Olmstead EM, et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Ann Thorac Surg. 2001;71:769–76. [CrossRef] [Google Scholar]
  66. Fang WC, Helm RE, Krieger KH, et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation. 1997;96(Suppl 2):194–9. [Google Scholar]
  67. Swaminathan M, Phillips-Bute BG, Conlon PJ, et al. The association of lowest hematocrit durig cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann Thorac Surg. 2003;76:784–92. [CrossRef] [Google Scholar]
  68. Habib RH, Zacharias A, Schwann TA, et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: Should current practice be changed? J Thorac Cardiovasc Surg. 2003;125:1438–50. [CrossRef] [Google Scholar]
  69. Ranucci M, Pavesi M, Mazza E, et al. Risk factors for renal dysfunction after coronary surgery: The role of cardiopulmonary bypass technique. Perfusion. 1994;9:319–26. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.