Free Access
J Extra Corpor Technol
Volume 39, Number 4, December 2007
Page(s) 291 - 295
Published online 15 December 2007
  1. Hsu LC. Biocompatibility in cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1997;11:376–82. [CrossRef] [Google Scholar]
  2. Soderstrom T, Hedner U, Arnljots B. Active site-inactivated factor VIIa prevents thrombosis without increased surgical bleeding: topical and intravenous administration in a rat model of deep arterial injury. J Vasc Surg. 2001;33:1072–9. [CrossRef] [Google Scholar]
  3. De Somer F, Van Belleghem Y, Caes F, et al. Tissue factor as the main activator of the coagulation system during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2002;123:951–8. [CrossRef] [Google Scholar]
  4. McNeely TB, Griffith MJ. The anticoagulant mechanism of action of heparin in contact-activated plasma: inhibition of factor X activation. Blood. 1995;65:1226–31. [Google Scholar]
  5. Spanier TB, Oz MC, Minanov OP, et al. Heparinless cardiopulmonary bypass with active-site blocked factor IXa: a preliminary study on the dog. J Thorac Cardiovasc Surg. 1998;115:1179–88. [CrossRef] [Google Scholar]
  6. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: A focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–90. [CrossRef] [Google Scholar]
  7. Landis RC. Why thrombin PAR1 receptors are important to the cardiac surgical patient. J Extra Corpor Technol. 2007;39: (in press). [Google Scholar]
  8. Landis RC. Protease activated receptors: Clinical relevance to hemostasis and inflammation. Hematol Oncol Clin North Am. 2007;21:103–13. [CrossRef] [Google Scholar]
  9. Day JR, Taylor KM, Lidington EA, et al. Aprotinin inhibits proinflammatory activation of endothelial cells by thrombin through the protease-activated receptor 1. J Thorac Cardiovasc Surg. 2006;131:21–7. [CrossRef] [Google Scholar]
  10. Wachtfogel YT, Kucich U, Hack CE, et al. Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. J Thorac Cardiovasc Surg. 1993;106:1–9. [CrossRef] [Google Scholar]
  11. Landis RC, Asimakopoulos G, Poullis M, Haskard DO, Taylor KM. The antithrombotic and antiinflammatory mechanisms of action of aprotinin. Ann Thorac Surg. 2001;72:2169–75. [CrossRef] [Google Scholar]
  12. Kamiya T, Katayama Y, Kashiwagi F, Terashi A. The role of bradykinin in mediating ischemic brain edema in rats. Stroke. 1993;24:571–5. [CrossRef] [PubMed] [Google Scholar]
  13. Gott JP, Cooper WA, Schmidt FEJr, et al. Modifying risk for extracorporeal circulation: Trial of four antiinflammatory strategies. Ann Thorac Surg. 1998;66:747–53. [CrossRef] [Google Scholar]
  14. Sedrakyan A, Treasure T, Elefteriades JA. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: A systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg. 2004;128:442–8. [CrossRef] [Google Scholar]
  15. Smith PK, Datta SK, Muhlbaier LH, Samsa G, Nadel A, Lipscomb J. Cost analysis of aprotinin for coronary artery bypass patients: Analysis of the randomized trials. Ann Thorac Surg. 2004;77:635–42. [CrossRef] [Google Scholar]
  16. Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke. 1991;22:877–83. [CrossRef] [PubMed] [Google Scholar]
  17. Asimakopoulos G, Thompson R, Nourshargh S, et al. An anti-inflammatory property of aprotinin detected at the level of leukocyte extravasation. J Thorac Cardiovasc Surg. 2000;120:361–9. [CrossRef] [Google Scholar]
  18. Asimakopoulos G, Lidington EA, Mason J, Haskard DO, Taylor KM, Landis RC. Effect of aprotinin on endothelial cell activation. J Thorac Cardiovasc Surg. 2001;122:123–8. [CrossRef] [Google Scholar]
  19. Pruefer D, Makowski J, Dahm M, et al. Aprotinin inhibits leukocyteendothelial cell interactions after hemorrhage and reperfusion. Ann Thorac Surg. 2003;75:210–5. [CrossRef] [Google Scholar]
  20. Anttila V, Hagino I, Iwata Y, et al. Aprotinin improves cerebral protection: evidence from a survival porcine model. J Thorac Cardiovasc Surg. 2006;132:948–53. [CrossRef] [Google Scholar]
  21. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65. [CrossRef] [PubMed] [Google Scholar]
  22. Mangano DT, Miao Y, Vuylsteke A, et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA. 2007;297:471–9. [CrossRef] [PubMed] [Google Scholar]
  23. Aronson S, Fontes ML, Miao Y, Mangano DT. Risk index for perioperative renal dysfunction/failure: Critical dependence on pulse pressure hypertension. Circulation. 2007;115:733–42. [CrossRef] [PubMed] [Google Scholar]
  24. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimizing perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2001;17:CD001886. [Google Scholar]
  25. Brown JR, Birkmeyer NJ, O’Connor GT. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation. 2007;115:2801–13. [CrossRef] [PubMed] [Google Scholar]
  26. Lemmer JHJr, Stanford W, Bonney SL, et al. Aprotinin for coronary artery bypass grafting: Effect on postoperative renal function. Ann Thorac Surg. 1995;59:132–6. [CrossRef] [Google Scholar]
  27. Kincaid EH, Ashburn DA, Hoyle JR, Reichert MG, Hammon JW, Kon ND. Does the combination of aprotinin and angiotensin-converting enzyme inhibitor cause renal failure after cardiac surgery? Ann Thorac Surg. 2005;80:1388–93. [CrossRef] [Google Scholar]
  28. Bridges CR. Valid comparisons of antifibrinolytic agents used in cardiac surgery. Circulation. 2007;115:2790–2. [CrossRef] [PubMed] [Google Scholar]
  29. van der Linden J, Lindvall G, Sartipy U. Aprotinin decreases postoperative bleeding and number of transfusions in patients on clopidogrel undergoing coronary artery bypass graft surgery: a double-blind, placebo-controlled, randomized clinical trial. Circulation. 2005;112(Suppl 9):I276–80. [CrossRef] [PubMed] [Google Scholar]
  30. Verrier ED, Shernan SK, Taylor KM, et al. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: A randomized trial. JAMA. 2004;291:2319–27. [CrossRef] [PubMed] [Google Scholar]
  31. Fitch JCK, Rollins S, Matis L, et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation. 1999;100:2499–506. [CrossRef] [PubMed] [Google Scholar]
  32. Shernan SK, Fitch JCK, Nussmeier NA, et al. Impact of pexelizumab, an anti-C5 complement antibody, on total mortality and adverse cardiovascular outcomes in cardiac surgical patients undergoing cardiopulmonary bypass. Ann Thorac Surg. 2004;77:942–9. [CrossRef] [Google Scholar]
  33. Eppinger MJ, Deeb GM, Bolling SF, Ward PA. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol. 1997;150:1773–84. [Google Scholar]
  34. Seekamp A, Mulligan MS, Till GO, et al. Role of beta 2 integrins and ICAM-1 in lung injury following ischemia-reperfusion of rat hind limbs. Am J Pathol. 1993;143:464–72. [Google Scholar]
  35. Kaneider NC, Agarwal A, Leger AJ, Kuliopulos A. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med. 2005;11:661–5. [CrossRef] [PubMed] [Google Scholar]
  36. Kaneider NC, Leger AJ, Kuliopulos A. Therapeutic targeting of molecules involved in leukocyte-endothelial cell interactions. FEBS J. 2006;273:4416–24. [CrossRef] [PubMed] [Google Scholar]
  37. Vuorte J, Lindsberg PJ, Kaste M, et al. Anti-ICAM-1 monoclonal antibody R6.5 (Enlimomab) promotes activation of neutrophils in whole blood. J Immunol. 1999;162:2353–7. [CrossRef] [PubMed] [Google Scholar]
  38. Furuya K, Takeda H, Azhar S, et al. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: A bedside-to-bench study. Stroke. 2001;32:2665–74. [CrossRef] [PubMed] [Google Scholar]
  39. Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: Results of the Enlimomab Acute Stroke Trial. Neurology. 2001;57:1428–34. [CrossRef] [PubMed] [Google Scholar]
  40. Frank RD, Holscher T, Schabbauer G, et al. A non-anticoagulant synthetic pentasacharide reduces inflammation in a murine model of kidney ischemia-reperfusion injury. Thromb Haemost. 2006;96:802–6. [CrossRef] [PubMed] [Google Scholar]
  41. Gott JP. Leukodepletion and aprotinin improve clinical outcome after extracorporeal circulation. Perfusion. 2001;16(Suppl 1):5–9. [CrossRef] [PubMed] [Google Scholar]
  42. Siderys H, Herod GT, Halbrook H, et al. A comparison of membrane and bubble oxygenation as used in cardiopulmonary bypass in patients. The importance of pericardial blood as a source of hemolysis. J Thorac Cardiovasc Surg. 1975;69:708–12. [CrossRef] [Google Scholar]
  43. Minneci PC, Deans KJ, Zhi H, et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest. 2005;115:3409–17. [CrossRef] [PubMed] [Google Scholar]
  44. Fagoonee S, Gburek J, Hirsch E, et al. Plasma protein haptoglobin modulates renal iron loading. Am J Pathol. 2005;166:973–83. [CrossRef] [Google Scholar]
  45. Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP. Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res. 2005;96:435–41. [CrossRef] [PubMed] [Google Scholar]
  46. Roguin A, Koch W, Kastrati A, Aronson D, Schomig A, Levy AP. Haptoglobin genotype is predictive of major adverse cardiac events in the 1-year period after percutaneous transluminal coronary angioplasty in individuals with diabetes. Diabetes Care. 2003;26:2628–31. [CrossRef] [PubMed] [Google Scholar]
  47. Roguin A, Ribichini F, Ferrero V, et al. Haptoglobin phenotype and the risk of restenosis after coronary artery stent implantation. Am J Cardiol. 2002;89:806–10. [CrossRef] [Google Scholar]
  48. Levy AP, Roguin A, Hochberg I, et al. Haptoglobin phenotype and vascular complications in patients with diabetes. N Engl J Med. 2000;343:969–70. [CrossRef] [PubMed] [Google Scholar]
  49. Christen S, Finckh B, Lykkesfeldt J, et al. Oxidative stress precedes peak systemic inflammatory response in pediatric patients undergoing cardiopulmonary bypass operation. Free Radic Biol Med. 2005;38:1323–32. [CrossRef] [Google Scholar]
  50. McBride WT, Armstrong MA, Crockard AD, McMurray TJ, Rea JM. Cytokine balance and immunosuppressive changes at cardiac surgery: contrasting response between patients and isolated CPB circuits. Br J Anaesth. 1995;75:724–33. [CrossRef] [Google Scholar]
  51. Jegger D, Horisberger J, Jachertz M, et al. A novel device for reducing hemolysis provoked by cardiotomy suction during open heart cardiopulmonary bypass surgery: A randomized prospective study. Artif Organs. 2007;31:23–30. [CrossRef] [PubMed] [Google Scholar]
  52. Hammon JW, Stump DA, Butterworth JF, et al. Single crossclamp improves 6-month cognitive outcome in high-risk coronary bypass patients: The effect of reduced aortic manipulation. J Thorac Cardiovasc Surg. 2006;131:114–21. [CrossRef] [Google Scholar]
  53. Tanaka K, Kanamori Y, Sato T, et al. Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans. 1991;37:M482–3. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.