Free Access
J Extra Corpor Technol
Volume 39, Number 4, December 2007
Page(s) 296 - 301
Published online 15 December 2007
  1. Arrowsmith JE, Grocott HP, Newman MF. Neurologic risk assessment, monitoring and outcome in cardiac surgery. J Cardiothorac Vasc Anesth. 1999;13:736–43. [CrossRef] [Google Scholar]
  2. Dirnagl U, Iadecola C, Moskowitz M. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7. [CrossRef] [Google Scholar]
  3. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: Cerebral protection by a barbiturate. Anesthesiology. 1986;64:165–70. [CrossRef] [PubMed] [Google Scholar]
  4. Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology. 1973;39:510–7. [CrossRef] [PubMed] [Google Scholar]
  5. Pascoe EA, Hudson RJ, Anderson BA, et al. High-dose thiopentone for open-chamber cardiac surgery: A retrospective review. Can J Anaesth. 1996;43:575–9. [CrossRef] [PubMed] [Google Scholar]
  6. Zaidan JR, Klochany A, Martin WM, Ziegler JS, Harless DM, Andrews RB. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology. 1991;74:406–11. [CrossRef] [PubMed] [Google Scholar]
  7. Warner DS, Takaoka S, Wu B, et al. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84:1475–84. [CrossRef] [PubMed] [Google Scholar]
  8. Zhou W, Fontenot HJ, Liu S, Kennedy RH. Modulation of cardiac calcium channels by propofol. Anesthesiology. 1997;86:670–5. [CrossRef] [PubMed] [Google Scholar]
  9. Pittman JE, Sheng H, Pearlstein R, Brinkhous A, Dexter F, Warner DS. Comparison of the effects of propofol and pentobarbital on neurologic outcome and cerebral infarct size after temporary focal ischemia in the rat. Anesthesiology. 1997;87:1139–44. [CrossRef] [PubMed] [Google Scholar]
  10. Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol. 1997;14:320–6. [CrossRef] [PubMed] [Google Scholar]
  11. Wang J, Yang X, Camporesi CV, et al. Propofol reduces infarct size and striatal dopamine accumulation following transient middle cerebral artery occlusion: a microdialysis study. Eur J Pharmacol. 2002;452:303–8. [CrossRef] [Google Scholar]
  12. Roach GW, Newman MF, Murkin JM, et al. Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Anesthesiology. 1999;90:1255–64. [CrossRef] [PubMed] [Google Scholar]
  13. Sethy VH, Wu H, Oostveen JA, Hall ED. Neuroprotective effects of the GABA(A) receptor partial agonist U-101017 in 3-acetylpyridinetreated rats. Neurosci Lett. 1997;228:45–9. [CrossRef] [Google Scholar]
  14. Yang Y, Shuaib A, Li Q, Siddiqui MM. Neuroprotection by delayed administration of topiramate in a rat model of middle cerebral artery embolization. Brain Res. 1998;804:169–76. [CrossRef] [Google Scholar]
  15. Kong RS, Butterworth J, Aveling W, et al. Clinical trial of the neuroprotectant clomethiazole in coronary artery bypass graft surgery: a randomized controlled trial. Anesthesiology. 2002;97:585–91. [CrossRef] [PubMed] [Google Scholar]
  16. The Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Effects of acadesine on the incidence of myocardial infarction and adverse cardiac outcomes after coronary artery bypass graft surgery. Anesthesiology. 1995;83:658–73. [CrossRef] [PubMed] [Google Scholar]
  17. MacGregor DG, Miller WJ, Stone TW. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor. Br J Pharmacol. 1993;110:470–6. [CrossRef] [Google Scholar]
  18. Perez-Pinzon MA, Mumford PL, Rosenthal M, Sick TJ. Anoxic preconditioning in hippocampal slices: Role of adenosine. Neuroscience. 1996;75:687–94. [CrossRef] [PubMed] [Google Scholar]
  19. Grocott HP, Nussmeier NA. Neuroprotection in cardiac surgery. Anesthesiol Clin North America. 2003;21:487–509. [CrossRef] [Google Scholar]
  20. Levy JH, Ramsay J, Murkin J. Aprotinin reduces the incidence of strokes following cardiac surgery. Circulation. 1996;94:I-535. [Google Scholar]
  21. Levy JH, Pifarre R, Schaff HV, et al. A multicenter, double-blind, placebo-controlled trial of aprotinin for reducing blood loss and the requirement for donor-blood transfusion in patients undergoing repeat coronary artery bypass grafting. Circulation. 1995;92:2236–44. [CrossRef] [PubMed] [Google Scholar]
  22. Frumento RJ, O’Malley CMN, Bennett-Guerrero E. Stroke after cardiac surgery: A retrospective analysis of the effect of aprotinin dosing regimens. Ann Thorac Surg. 2003;75:479–83. [CrossRef] [Google Scholar]
  23. Harmon DC, Ghori KG, Eustace NP, O’Callaghan SJ, O’Donnell AP, Shorten GD. Aprotinin decreases the incidence of cognitive deficit following CABG and cardiopulmonary bypass: a pilot randomized controlled study. Can J Anaesth. 2004;51:1002–9. [CrossRef] [PubMed] [Google Scholar]
  24. Murkin JM. Postoperative cognitive dysfunction: Aprotinin, bleeding and cognitive testing. Can J Anaesth. 2004;51:957–62. [CrossRef] [PubMed] [Google Scholar]
  25. Grocott HP, Sheng H, Miura Y, et al. The effects of aprotinin on outcome from cerebral ischemia in the rat. Anesth Analg. 1999;88:1–7. [CrossRef] [PubMed] [Google Scholar]
  26. Brooker RF, Brown WR, Moody DM, et al. Cardiotomy suction: A major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg. 1998;65:1651–5. [CrossRef] [Google Scholar]
  27. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65. [CrossRef] [PubMed] [Google Scholar]
  28. Forsman M, Tubylewicz Olsnes B, Semb G, Steen P. Effects of nimodipine on cerebral blood flow and neuropsychological outcome after cardiac surgery. BJA. 1990;65:514–20. [CrossRef] [Google Scholar]
  29. Gelmers HJ, Gorter K, de Weerdt CJ, Wiezer HJ. A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med. 1988;318:203–7. [CrossRef] [PubMed] [Google Scholar]
  30. Legault C, Furberg CD, Wagenknecht LE, et al. Nimodipine neuroprotection in cardiac valve replacement. Report of an early terminated trial. Stroke. 1996;27:593–8. [CrossRef] [PubMed] [Google Scholar]
  31. Grieco G, d’Hollosy M, Culliford A, Jonas S. Evaluating neuroprotective agents for clinical anti-ischemic benefit using neurological changes after cardiac surgery under cardiopulmonary bypass. Methodological strategies and results of a double-blind, placebo-controlled trial of CMI ganglioside. Stroke. 1996;27:858–74. [CrossRef] [PubMed] [Google Scholar]
  32. Leon A, Lipartiti M, Seren MS, et al. Hypoxic-ischemic damage and the neuroprotective effects of GM1 ganglioside. Stroke. 1990;21:III95–7. [PubMed] [Google Scholar]
  33. Arrowsmith JE, Harrison MJG, Newman SP, Stygall J, Timberlake N, Pugsley WB. Neuroprotection of the brain during cardiopulmonary bypass. A randomized trial of remacemide during coronary artery bypass in 171 patients. Stroke. 1998;29:2357–62. [CrossRef] [PubMed] [Google Scholar]
  34. Ma D, Lynch J, Franks NP, Maze M, Grocott HP. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology. 2003;98:690–8. [CrossRef] [PubMed] [Google Scholar]
  35. Homi HM, Yokoo N, Ma D, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003;99:876–81. [CrossRef] [PubMed] [Google Scholar]
  36. Homi HM, Yokoo N, Venkatakrishnan K, Bednar MM, Grocott HP. Neuroprotection by antagonism of the N-methyl-D-aspartate receptor NR2B subtype in a rat model of cardiopulmonary bypass. Anesthesiology. 2004;101:A878. [Google Scholar]
  37. Schmitt B, Bauersfeld U, Fanconi S, et al. The effect of the N-methyl-D-aspartate receptor antagonist dextromethorphan on peri-operative brain injury in children undergoing cardiac surgery with cardiopulmonary bypass: Results of a pilot study. Neuropediatrics. 1997;28:191–7. [CrossRef] [PubMed] [Google Scholar]
  38. Nagels W, Demeyere R, Van Hemelrijck J, Vandenbussche E, Gijbels K, Vandermeersch E. Evaluation of the neuroprotective effects of s(+)-ketamine during open-heart surgery. Anesth Analg. 2004;98:1595–603. [CrossRef] [PubMed] [Google Scholar]
  39. Mitchell SJ, Pellett O, Gorman DF. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg. 1999;67:1117–24. [CrossRef] [Google Scholar]
  40. Mathew JP, Grocott HP, Phillips-Bute B, Newman MF. Lidocaine does not prevent cognitive dysfunction after cardiac surgery. Anesth Analg. 2004;98:SCA13. [Google Scholar]
  41. Amory DW, Grigore A, Amory JK, et al. Neuroprotection is associated with beta-adrenergic receptor antagonists during cardiac surgery: Evidence from 2,575 patients. J Cardiothorac Vasc Anesth. 2002;16:270–7. [CrossRef] [Google Scholar]
  42. Savitz SI, Erhardt JA, Anthony JV, et al. The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab. 2000;20:1197–204. [CrossRef] [PubMed] [Google Scholar]
  43. Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY. Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol. 1989;256:H589–93. [Google Scholar]
  44. Butterworth J, Legault C, Stump DA, et al. A randomized, blinded trial of the antioxidant pegorgotein: No reduction in neuropsychological deficits, inotropic drug support, or myocardial ischemia after coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 1999;13:690–4. [CrossRef] [Google Scholar]
  45. Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 2003;75:S715–20. [CrossRef] [Google Scholar]
  46. Mathew JP, Shernan SK, White WD, et al. Preliminary report of the effects of complement suppression with pexelizumab on neurocognitive decline after coronary artery bypass graft surgery. Stroke. 2004;35:2335–9. [CrossRef] [PubMed] [Google Scholar]
  47. Hofer RE, Christopherson TJ, Scheithauer BW, Milde JH, Lanier WL. The effect of a platelet activating factor antagonist (BN 52021) on neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology. 1993;79:347–53. [CrossRef] [PubMed] [Google Scholar]
  48. Panetta T, Marcheselli VL, Braquet P, Spinnewyn B, Bazan NG. Effects of a platelet activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain: inhibition of ischemia-reperfusion induced cerebral injury. Biochem Biophys Res Commun. 1987;149:580–7. [CrossRef] [Google Scholar]
  49. Taggart D. Neuroprotection during cardiac surgery: a randomized trial of a platelet activating factor antagonist Fifth International Brain and Cardiac Surgery Conference, September 7–9, 2000 London, UK, 2000. [Google Scholar]
  50. Clark RK, Lee EV, White RF, Jonak ZL, Feuerstein GZ, Barone FC. Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull. 1994;35:387–92. [CrossRef] [Google Scholar]
  51. Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR. Postis-chemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994;25:869–75. [CrossRef] [PubMed] [Google Scholar]
  52. Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322:1405–11. [CrossRef] [PubMed] [Google Scholar]
  53. Chaney MA. Corticosteroids and cardiopulmonary bypass: A review of clinical investigations. Chest. 2002;121:921–31. [CrossRef] [PubMed] [Google Scholar]
  54. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): Randomised placebo-controlled trial. Lancet. 2004;364:1321–8. [CrossRef] [PubMed] [Google Scholar]
  55. Wass CT, Lanier WL. Glucose modulation of ischemic brain injury: Review and clinical recommendations. Mayo Clin Proc. 1996;71:801–12. [CrossRef] [Google Scholar]
  56. Li P, Kristian T, Shamloo M, Siesjo B. Effects of preischemic hyperglycemia on brain damage incurred by rats subjected to 2.5 or 5 minutes of forebrain ischemia. Stroke. 1996;27:1592–602. [CrossRef] [PubMed] [Google Scholar]
  57. Lam AM, Winn HR, Cullen BF, Sundling N. Hyperglycemia and neurological outcome in patients with head injury. J Neurosurg. 1991;75:545–51. [CrossRef] [PubMed] [Google Scholar]
  58. Puskas F, Grocott HP, White WD, Mathew JP, Newman MF, Bar-Yosef S. Hyperglycemia and increased incidence of cognitive deficit after cardiac surgery. Anesth Analg. 2005;100:SCA19. [Google Scholar]
  59. Lavie G, Teichner A, Shohami E, Ovadia H, Leker RR. Long term cerebroprotective effects of dexanabinol in a model of focal cerebral ischemia. Brain Res. 2001;901:195–201. [CrossRef] [Google Scholar]
  60. Leker RR, Shohami E, Abramsky O, Ovadia H. Dexanabinol: A novel neuroprotective drug in experimental focal cerebral ischemia. J Neurol Sci. 1999;162:114–9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.