Free Access
Issue
J Extra Corpor Technol
Volume 42, Number 3, September 2010
Page(s) 203 - 211
DOI https://doi.org/10.1051/ject/201042203
Published online 15 September 2010
  1. Borger MA, Peniston CM, Weisel RD, Vasiliou M, Green REA, Feindel M. Neuropsychologic impairment after coronary bypass surgery: Effect of gaseous microemboli during perfusionist interventions. J Thorac Cardiovasc Surg. 2001;121:743–9. [CrossRef] [Google Scholar]
  2. Taylor RL, Borger MA, Weisel RD, Fedorko L, Feindel CM. Cerebral microemboli during cardiopulmonary bypass: Increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68:89–93. [CrossRef] [Google Scholar]
  3. Myers GJ. Preventing gaseous microemboli during blood sampling and drug administration: An in vitro investigation. J Extra Corpor Technol. 2007;39:192–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Myers GJ, Voorhees C, Haynes R, Eke B. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: An in vitro study. J Extra Corpor Technol. 2009;41:20–7. [Google Scholar]
  5. Jones TJ, Deal DD, Vernon JC, et al. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann Thorac Surg. 2002;74:2132–7. [CrossRef] [Google Scholar]
  6. Win KN, Wang S, Undar A. Microemboli generation, detection and characterization during CPB procedures in neonates, infants, and small children. ASAIO J. 2008;54:486–90. [CrossRef] [PubMed] [Google Scholar]
  7. Merkle F, Boettcher W, Schulz F, et al. Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits. J Extra Corpor Technol. 2003;35:133–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Lynch JE, Riley JB. Microemboli detection on extracorporeal bypass circuits. Perfusion. 2008;23:23–32. [CrossRef] [PubMed] [Google Scholar]
  9. Liu YH, Wang DX, Li LH, et al. The effects of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive dysfunction after coronary artery bypass graft surgery. Anesth Analg. 2009;109:1013–22. [CrossRef] [PubMed] [Google Scholar]
  10. Diegeler A, Hirsch R, Schneider F, et al. Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Ann Thorac Surg. 2000;69:1162–6. [CrossRef] [Google Scholar]
  11. Riley JB. Arterial line filters ranked for gaseous micro-emboli separation performance: An in vitro study. J Extra Corpor Technol. 2008;40:21–6. [Google Scholar]
  12. Brown WR, Moody DM, Challa VR, Stump DA, Hammon JW. Longer duration of cardiopulmonary bypass is associated with greater numbers of cerebral microemboli. Stroke. 2000;31:707–13. [CrossRef] [PubMed] [Google Scholar]
  13. Norman MJ, Sistino JJ, Acsell JR. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli. J Extra Corpor Technol. 2004;36:336–42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Grist G. Gaseous microemboli and hyperoxia. J Extra Corpor Technol. 2006;38:367–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.