Open Access
J Extra Corpor Technol
Volume 45, Number 2, June 2013
Page(s) 116 - 121
Published online 15 June 2013
  1. Newman S, Smith P, Treasure T, et al. Acute neuropsychological consequences of coronary artery bypass surgery. Curr Psychol Res Rev. 1987;6:115–124. [CrossRef] [Google Scholar]
  2. Murkin JM, Stump DA, Blumenthal JA, et al. Defining dysfunction: Group means versus incidence analysis—A statement of consensus. Ann Thorac Surg. 1997;64:904–905. [CrossRef] [Google Scholar]
  3. Selnes OA, Grega MA, Bailey MM, et al. Neurocognitive outcomes 3 years after coronary artery bypass graft surgery: A controlled study. Ann Thorac Surg. 2007;84:1885–1896. [CrossRef] [Google Scholar]
  4. Baird A, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41:581–589. [CrossRef] [Google Scholar]
  5. Moody DM, Bell MA, Challa VR, et al. Brain microemboli during cardiac surgery or aortography. Ann Neurol. 1990;28:477–486. [CrossRef] [PubMed] [Google Scholar]
  6. Maragos PJ, Schmechel DE. Neuron-specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci. 1987;10:269–295. [CrossRef] [PubMed] [Google Scholar]
  7. Zimmer DB, Cornwall EH, Landar A, Song W. The S-100 protein family: History, function, and expression. Brain Res Bull. 1995;37:417–429. [CrossRef] [Google Scholar]
  8. Persson L, Hardemark HG, Gustafsson J, et al. S-100 protein and neuro-specific enolase in cerebrospinal fluid and serum: Markers of cell damage in human central nervous system. Stroke. 1987;18:911–918. [CrossRef] [PubMed] [Google Scholar]
  9. Johnsson P, Blomquist S, Luhrs C, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg. 2000;69:750–754. [CrossRef] [Google Scholar]
  10. Anderson RE, Hansson LO, Liska J, et al. The effect of cardiotomy suction on the brain injury marker S100 beta after cardiopulmonary bypass. Ann Thorac Surg. 2000;69:847–850. [CrossRef] [Google Scholar]
  11. Secco M, Edelman JJ, Wilson MK, et al. Serum biomarkers of neurologic injury in cardiac operations. Ann Thorac Surg. 2012;94:1026–1033. [CrossRef] [Google Scholar]
  12. Hogue CW, Murphy SF, Schechtman KB, et al. Risk factors for early or delayed stroke after cardiac surgery. Circulation. 1999;100:642–647. [CrossRef] [PubMed] [Google Scholar]
  13. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD study. ISPOCD investigators, International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351:857–861. [CrossRef] [PubMed] [Google Scholar]
  14. Jones EL, Weintraub WS, Craver JM, et al. Coronary bypass surgery: Is the operation different today? J Thorac Cardiovasc Surg. 1991;101:108–115. [CrossRef] [Google Scholar]
  15. The TIME Investigators. Trial of invasive versus medical therapy in elderly patients with chronic symptomatic coronary artery disease (TIME): A randomized trial. Lancet. 2001;358:951–960. [CrossRef] [PubMed] [Google Scholar]
  16. Tardiff BE, Newman MF, Saunders AM, et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. Ann Thorac Surg. 1997;64:715–720. [CrossRef] [Google Scholar]
  17. Roach GW, Kanchugar M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery: Multicenter study of perioperative ischemia research groups and the ischemia research and education foundation investigators. N Engl J Med. 1996;335:1857–1863. [CrossRef] [PubMed] [Google Scholar]
  18. Niles NW, McGrath PD, Malenka D, et al. Survival of patients with diabetes and multivessel disease after surgical or percutaneous coronary revascularization. Results of a large regional prospective study. J Am Coll Cardiol. 2001;37:1008–1015. [CrossRef] [Google Scholar]
  19. Goto T, Baba T, Yoshitake A, et al. Craniocervical and aortic atherosclerosis as neurologic risk factors in coronary surgery. Ann Thorac Surg. 2000;69:834–840. [CrossRef] [Google Scholar]
  20. Wareing TH, Davila-Roman VG, Daily BB, et al. Strategy for the reduction of stroke incidence in cardiac surgical patients. Ann Thorac Surg. 1993;55:1400–1408. [CrossRef] [Google Scholar]
  21. Stump DA, Kon NA, Rogers AT, et al. Emboli and neuropsychologic outcome following cardiopulmonary bypass. Echocardiography. 1996;13:555–558. [CrossRef] [PubMed] [Google Scholar]
  22. Lata A, Stump D, Deal D, et al. Cannula design reduces particulate and gaseous emboli during cardiopulmonary bypass for coronary artery bypass grafting. Perfusion. 2011;26:239–244. [CrossRef] [PubMed] [Google Scholar]
  23. Jones TJ, Stump DA, Deal D, et al. Hypothermia protects the brain from embolization by reducing and redirecting the embolic load. Ann Thorac Surg. 1999;68:1465. [Google Scholar]
  24. Gold JP, Charlson ME, Williams-Russo P. Improvement of outcomes after coronary artery bypass; a randomized trial comparing high verus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302–1314. [CrossRef] [Google Scholar]
  25. Murkin JM, Farrar JK, Tweed WA, et al. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: The role of PaCO2. Anesth Analg. 1987;66:665–672. [Google Scholar]
  26. Helps SC, Parsons DW, Reilly PL, et al. The effect of gas emboli on rabbit cerebral blood flow. Stroke. 1990;21:94–99. [CrossRef] [PubMed] [Google Scholar]
  27. Moody DM, Brown WR, Challa VR, et al. Efforts to characterize the nature and chronicle the occurrence of brain emboli during cardiopulmonary bypass. Perfusion. 1995;9:416–417. [Google Scholar]
  28. Cook DJ, Oliver WC, Orsulak TA, et al. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Ann Thorac Surg. 1995;60:1671–1677. [CrossRef] [Google Scholar]
  29. Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg. 2010;110:321–328. [CrossRef] [PubMed] [Google Scholar]
  30. Nathan HJ, Wells GA, Munson JL, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: A randomized trial. Circulation. 2001;104(Suppl I):I85–I91. [Google Scholar]
  31. Downing SW, Edmunds LHJr. Release of vasoactive substances during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:1236–1243. [CrossRef] [Google Scholar]
  32. Reinsfelt B, Ricksten SE, Zetterberg H, et al. Cerebrospinal fluid markers of brain injury, inflammation, and blood–brain dysfunction in cardiac surgery. Ann Thorac Surg. 2012;94:549–555. [CrossRef] [Google Scholar]
  33. Warren JS, Ward PA. The inflammatory response. In: Beutler E, Coller BS, Lichtman MA, et al. (eds.). Williams Hematology, 6th ed. New York, NY: McGraw-Hill; 2001:67. [Google Scholar]
  34. Fantone JC. Cytokines and neutrophils: Neutrophil-derived cytokines and the inflammatory response. In: Remick DG, Friedland JS (eds.). Cytokines in Health and Disease, 2nd ed New York, NY: Marcel Dekker; 1997:373. [Google Scholar]
  35. Kincaid EH, Jones TJ, Stump DA, et al. Processing scavenged blood with a cell saver reduces cerebral lipid microembolization. Ann Thorac Surg. 2000;70:1296–1300. [CrossRef] [Google Scholar]
  36. Wilcox T, Mitchell S. Microemboli in our bypass circuits: A contemporary audit. J Extra Corpor Technol. 2009;41:31–37. [Google Scholar]
  37. Milson F, Mitchell S. A dual-vent left heart deairing technique markedly reduces carotid artery microemboli. Ann Thorac Surg. 1998;66:785–791. [CrossRef] [Google Scholar]
  38. Murkin JM, Menkis AH, Downey D, et al. Epiaortic scanning significantly decreases cerebral embolic load associated with aortic instrumentation for CPB. Ann Thorac Surg. 2000;70:1796–1803. [CrossRef] [Google Scholar]
  39. Hammon JW, Stump DA, Butterworth JE, et al. Single cross clamp improves six month cognitive outcome in high risk coronary bypass patients. J Thorac Cardiovasc Surg. 2006;131:114–121. [CrossRef] [Google Scholar]
  40. Sundt TM, Barner HB, Camillo CJ, et al. Total arterial revascularization with an internal thoracic artery and radial artery T graft. Ann Thorac Surg. 1999;68:399–405. [CrossRef] [Google Scholar]
  41. Webb WR, Harrison LH, Helmcke FR, et al. Carbon dioxide field flooding minimizes residual intracardiac air after open heart operations. Ann Thorac Surg. 1997;64:1489–1491. [CrossRef] [Google Scholar]
  42. Gallegos RP, Gudbjartsson T, Aranki S. Mitral valve replacement. In: Cohn LH (ed.). Cardiac Surgery in the Adult, 4th ed. New York, NY: McGraw Hill; 2012:862–863. [Google Scholar]
  43. Padagachee TS, Parsons R, Theobold RG, et al. The effect of arterial filtration on reduction of gaseous emboli in the middle cerebral artery during cardiopulmonary bypass. Ann Thorac Surg. 1988;45:647–649. [CrossRef] [Google Scholar]
  44. Riley JB. Arterial line filters ranked for gaseous micro-emboli separation performance: An in vitro study. J Extra Corpor Technol. 2008;40:21–26. [Google Scholar]
  45. Groom RC, Quinn RD, Lennon P, et al. Detection and elimination of microemboli related to cardiopulmonary bypass circuits. Cardiovasc Qual Outcomes. 2009;2:191–198. [CrossRef] [PubMed] [Google Scholar]
  46. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized prospective study. Anesth Analg. 2007;104:51–58. [CrossRef] [PubMed] [Google Scholar]
  47. Hannan EL, Wu C, Smith CL, et al. Off-pump versus on-pump coronary bypass graft surgery: Differences in short-term outcome and long-term mortality and need for subsequent revascularization. Circulation. 2007;116:1145–1152. [CrossRef] [PubMed] [Google Scholar]
  48. Puskas JD, Thourani VH, Kilgo P, et al. Off-pump coronary bypass disproportionally benefits high risk patients. Ann Thorac Surg. 2009;88:1142–1147. [CrossRef] [Google Scholar]
  49. Kuss O, von Salviti B, Borgermann J, et al. Off-pump versus on-pump coronary artery bypass grafting: A systematic review and metaanalysis of propensity score analysis. J Thorac Cardiovasc Surg. 2010;82:1966–1975. [Google Scholar]
  50. Moller CH, Penninga L, Wetterslev J, et al. : Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease. Cochrane Database Syst Rev. 2012;3:CD007224. [Google Scholar]
  51. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary artery bypass grafting. N Engl J Med. 2001;344:395–402. [CrossRef] [PubMed] [Google Scholar]
  52. Vermeer SE, Longstreth WTJr, Koudstaal PJ. Silent brain infarcts: A systematic review. Lancet Neurol. 2007;6:611–619. [CrossRef] [Google Scholar]
  53. Hammon JW, Stump DA, Butterworth JE, et al. CABG with single cross clamp results in fewer persistent neuropsychological deficits than multiple clamp or OPCAB. Ann Thorac Surg. 2007;84:1174–1179. [CrossRef] [Google Scholar]
  54. Selnes OA, Grega MA, Borowicz LM, et al. Cognitive outcomes three years after coronary bypass surgery: A comparison of on-pump coronary bypass surgery and nonsurgical controls. Ann Thorac Surg. 2005;79:1201–1209. [CrossRef] [Google Scholar]
  55. Mullges W, Babin-Ebell J, Reents W, Toyka KV. Cognitive performance after coronary bypass grafting: A follow-up study. Neurology. 2002;59:741–743. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.