Open Access
Issue
J Extra Corpor Technol
Volume 45, Number 2, June 2013
Page(s) 86 - 93
DOI https://doi.org/10.1051/ject/201345086
Published online 15 June 2013
  1. Sessler DI. Temperature monitoring and perioperative thermoregulation. Anesthesiology. 2008;109:318–338. [CrossRef] [PubMed] [Google Scholar]
  2. Grigore AM, Murray CF, Ramakrishna H, Djaiani G. A core review of temperature regimens and neuroprotection during cardiopulmonary bypass: Does rewarming rate matter? Anesth Analg. 2009;109:1741–1751. [CrossRef] [PubMed] [Google Scholar]
  3. Cook DJ. CON: Temperature regimens and neuroprotection during cardiopulmonary bypass: Does rewarming rate matter? Anesth Analg. 2009;109:1733–1737. [CrossRef] [PubMed] [Google Scholar]
  4. Nussmeier N. Management of temperature during and after cardiac surgery. Tex Heart Inst J. 2005;32:472–476. [Google Scholar]
  5. Akata T, Setoguchi H, Shirozu K, Yoshino J. Reliability of temperatures measured at standard monitoring sites as an index of brain temperature during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction. J Thorac Cardiovasc Surg. 2007;133:1559–1565. [CrossRef] [Google Scholar]
  6. Stone JG, Young WL, Smith CR, et al. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology. 1995;82:344–351. [CrossRef] [PubMed] [Google Scholar]
  7. Jakobsson J, Nilsson A, Carlsson L. Core temperature measured in the auricular canal: Comparison between four different tympanic thermometers. Acta Anaesthesiol Scand. 1992;36:819–824. [CrossRef] [Google Scholar]
  8. Shinozaki T, Deane R, Perkins FM. Infrared tympanic thermometer: Evaluation of a new thermometer. Crit Care Med. 1988;16:148–150. [CrossRef] [PubMed] [Google Scholar]
  9. Shibasaki M, Narihiko K, Tominaga H, et al. Continuous measurement of tympanic temperature with a new infrared method using an optical fiber. J Appl Physiol. 1998;85:921–926. [CrossRef] [PubMed] [Google Scholar]
  10. Core R Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. [Google Scholar]
  11. Matsukawa T, Sessler DI, Sessler AM, et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology. 1995;82:662–673. [CrossRef] [PubMed] [Google Scholar]
  12. Frank SM, Fleisher LA, Breslow MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA. 1997;277:1127–1134. [CrossRef] [PubMed] [Google Scholar]
  13. Schmied H, Reiter A, Kurz A, et al. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet. 1996;347:289–292. [CrossRef] [Google Scholar]
  14. Kettner SC, Sitzwohl C, Zimpfer M, et al. The effect of graded hypothermia (36 degrees C–32 degrees C) on hemostasis in anesthetized patients without surgical trauma. Anesth Analg. 2003;96: 1772–1776. [CrossRef] [PubMed] [Google Scholar]
  15. Doufas AG. Consequences of inadvertent perioperative hypothermia. Best Pract Res Clin Anaesthesiol. 2003;17:535–549. [CrossRef] [Google Scholar]
  16. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature group. N Engl J Med. 1996;334:1209–1215. [CrossRef] [PubMed] [Google Scholar]
  17. Busto R, Dietrich WD, Globus MY, et al. The importance of brain temperature in cerebral ischemic injury. Stroke. 1989;20:1113–1114. [CrossRef] [PubMed] [Google Scholar]
  18. Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg. 2010;110:321–328. [CrossRef] [PubMed] [Google Scholar]
  19. Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab. 2000;20:520–530. [CrossRef] [PubMed] [Google Scholar]
  20. Cork RC, Vaughan RW, Humphrey LS. Precision and accuracy of intraoperative temperature monitoring. Anesth Analg. 1983;62:211–214. [Google Scholar]
  21. Benzinger M. Tympanic thermometry in surgery and anaesthesia. JAMA. 1969;209:1207–1211. [CrossRef] [PubMed] [Google Scholar]
  22. Matsukawa T, Kurz A, Sessler DI, et al. Propofol linearly reduces the vasoconstriction and shivering thresholds. Anesthesiology. 1995;82:1169–1180. [CrossRef] [PubMed] [Google Scholar]
  23. Annadata RS, Sessler DI, Tayefeh F, et al. Desflurane slightly increases the sweating threshold, but produces marked nonlinear decreases in the vasoconstriction and shivering thresholds. Anesthesiology. 1995;83:1205–1211. [CrossRef] [PubMed] [Google Scholar]
  24. Bissonnette B, Sessler DI, LaFlamme P. Intraoperative temperature monitoring sites in infants and children and the effect of inspired gas warming on esophageal temperature. Anesth Analg. 1989;69:192–196. [Google Scholar]
  25. Safar ME, Peronneau PA, Levenson JA, et al. Pulsed Doppler: Diameter, blood flow velocity and volumic flow of the brachial artery in sustained essential hypertension. Circulation. 1981;63:393–400. [CrossRef] [PubMed] [Google Scholar]
  26. Matre K, Segadal L, Engedal H. Continuous measurement of aortic blood velocity, after cardiac surgery, by means of an extractable Doppler ultrasound probe. J Biomed Eng. 1985;7:84–88. [CrossRef] [Google Scholar]
  27. Nussmeier NA, Cheng W, Marino M, et al. Temperature during cardiopulmonary bypass: The discrepancies between monitored sites. Anesth Analg. 2006;103:1373–1379. [CrossRef] [PubMed] [Google Scholar]
  28. Kaukuntla H, Harrington D, Bilkoo I, et al. Temperature monitoring during cardiopulmonary bypass—Do we undercool or overheat the brain? Eur J Cardiothorac Surg. 2004;26:580–585. [CrossRef] [Google Scholar]
  29. Grocott HP, Newman MF, Croughwell ND, et al. Continuous jugular venous versus nasopharyngeal temperature monitoring during hypothermic cardiopulmonary bypass for cardiac surgery. J Clin Anesth. 1997;9:312–316. [CrossRef] [Google Scholar]
  30. Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: A focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–290. [CrossRef] [Google Scholar]
  31. Grigore AM, Grocott HP, Mathew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg. 2002;94:4–10. [CrossRef] [PubMed] [Google Scholar]
  32. Newland RF, Sanderson AJ, Baker RA. Accuracy of temperature measurement in the cardiopulmonary bypass circuit. J Extra Corpor Technol. 2005;37:32–37. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Salah M, Sutton R, Tsarovsky G, et al. Temperature inaccuracies during cardiopulmonary bypass. J Extra Corpor Technol. 2005;37:38–42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Sinha PK, Kaushik S, Neema PK. Massive epistaxis after nasopharyngeal temperature probe insertion after cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:123–124. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.