Free Access
Issue
J Extra Corpor Technol
Volume 45, Number 4, December 2013
Page(s) 242 - 247
DOI https://doi.org/10.1051/ject/201345242
Published online 15 December 2013
  1. Green A, Dobias SB, Walters DJ, Brasier AR. Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology. 1994;134:2581–2588. [CrossRef] [PubMed] [Google Scholar]
  2. Souza SC, Yamamoto MT, Franciosa MD, Lien P, Greenberg AS. BRL 49653 blocks the lipolytic actions of tumor necrosis factoralpha: A potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes. 1998;47:691–695. [CrossRef] [PubMed] [Google Scholar]
  3. Yang RZ, Lee MJ, Hu H, et al. Acute-phase serum amyloid A: An inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med. 2006;3:e287. [CrossRef] [Google Scholar]
  4. van Hall G, Steensberg A, Sacchetti M, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88:3005–3010. [CrossRef] [PubMed] [Google Scholar]
  5. Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54:3458–3465. [CrossRef] [PubMed] [Google Scholar]
  6. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52:2882–2887. [CrossRef] [PubMed] [Google Scholar]
  7. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994;1213:263–276. [CrossRef] [Google Scholar]
  8. Lopaschuk GD, Collins-Nakai R, Olley PM, et al. Plasma fatty acid levels in infants and adults after myocardial ischemia. Am Heart J. 1994;128:61–67. [CrossRef] [Google Scholar]
  9. Storstein L, Nitter-Hauge S, Fjeld N. Effect of cardiopulmonary bypass with heparin administration on digitoxin pharmacokinetics, serum electrolytes, free fatty acids, and renal function. J Cardiovasc Pharmacol. 1979;1:191–204. [CrossRef] [PubMed] [Google Scholar]
  10. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–1129. [CrossRef] [PubMed] [Google Scholar]
  11. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res. 1988;62:535–542. [CrossRef] [PubMed] [Google Scholar]
  12. Opie LH. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Relation to myocardial ischemia and infarct size. Am J Cardiol. 1975;36:938–953. [CrossRef] [Google Scholar]
  13. De Leiris J, Opie LH, Lubbe WF. Effects of free fatty acid and enzyme release in experimental glucose on myocardial infarction. Nature. 1975;253:746–747. [CrossRef] [PubMed] [Google Scholar]
  14. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet. 1968;1:710–714. [CrossRef] [Google Scholar]
  15. Gupta DK, Jewitt DE, Young R, Hartog M, Opie LH. Increased plasma-free-fatty-acid concentrations and their significance in patients with acute myocardial infarction. Lancet. 1969;2:1209–1213. [CrossRef] [Google Scholar]
  16. Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–725. [CrossRef] [Google Scholar]
  17. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol. 1990;259:H1079–H1085. [Google Scholar]
  18. Karmazyn M, Moffat MP. Role of Na+/H+ exchange in cardiac physiology and pathophysiology: Mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res. 1993;27:915–924. [CrossRef] [PubMed] [Google Scholar]
  19. McIlwain RB, Timpa JG, Kurundkar AR, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Invest. 2010;90:128–139. [CrossRef] [Google Scholar]
  20. Adrian K, Mellgren K, Skogby M, Friberg LG, Mellgren G, Wadenvik H. Cytokine release during long-term extracorporeal circulation in an experimental model. Artif Organs. 1998;22:859–863. [CrossRef] [PubMed] [Google Scholar]
  21. Anand KJ, Brown MJ, Causon RC, Christofides ND, Bloom SR, Aynsley-Green A. Can the human neonate mount an endocrine and metabolic response to surgery? J Pediatr Surg. 1985;20:41–48. [CrossRef] [Google Scholar]
  22. Chwals WJ. The metabolic response to surgery in neonates. Curr Opin Pediatr. 1994;6:334–340. [CrossRef] [PubMed] [Google Scholar]
  23. Liu B, Clanachan AS, Schulz R, Lopaschuk GD. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res. 1996;79:940–948. [CrossRef] [PubMed] [Google Scholar]
  24. Lestradet H, Deschamps I, Giron B. Insulin and free fatty acid levels during oral glucose tolerance tests and their relation to age in 70 healthy children. Diabetes. 1976;25:505–508. [CrossRef] [PubMed] [Google Scholar]
  25. Winthrop AL, Wesson DE, Pencharz PB, Jacobs DG, Heim T, Filler RM. Injury severity, whole body protein turnover, and energy expenditure in pediatric trauma. J Pediatr Surg. 1987;22:534–537. [CrossRef] [Google Scholar]
  26. Anand KJ, Brown MJ, Bloom SR, Aynsley-Green A. Studies on the hormonal regulation of fuel metabolism in the human newborn infant undergoing anaesthesia and surgery. Horm Res. 1985;22:115–128. [CrossRef] [PubMed] [Google Scholar]
  27. Mesotten D, Swinnen JV, Vanderhoydonc F, Wouters PJ, Van den Berghe G. Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab. 2004;89:219–226. [CrossRef] [PubMed] [Google Scholar]
  28. Mesotten D, Wouters PJ, Peeters RP, et al. Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab. 2004;89:3105–3113. [CrossRef] [PubMed] [Google Scholar]
  29. Fortenberry JD, Bhardwaj V, Niemer P, Cornish JD, Wright JA, Bland L. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation. J Pediatr. 1996;128:670–678. [CrossRef] [Google Scholar]
  30. Ussher JR, Wang W, Gandhi M, et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res. 2012;94:359–369. [CrossRef] [PubMed] [Google Scholar]
  31. Zuurbier CJ, Van Wezel HB. Glucose-insulin therapy, plasma substrate levels and cardiac recovery after cardiac ischemic events. Cardiovasc Drugs Ther. 2008;22:125–131. [CrossRef] [PubMed] [Google Scholar]
  32. Karpe F, Fielding BA, Coppack SW, Lawrence VJ, Macdonald IA, Frayn KN. Oscillations of fatty acid and glycerol release from human subcutaneous adipose tissue in vivo. Diabetes. 2005;54:1297–1303. [CrossRef] [PubMed] [Google Scholar]
  33. Frayn KN, Fielding BA, Karpe F. Adipose tissue fatty acid metabolism and cardiovascular disease. Curr Opin Lipidol. 2005;16:409–415. [CrossRef] [PubMed] [Google Scholar]
  34. Schmitz-Peiffer C. Signalling aspects of insulin resistance in skeletal muscle: Mechanisms induced by lipid oversupply. Cell Signal. 2000;12:583–594. [CrossRef] [PubMed] [Google Scholar]
  35. Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278:10297–1303. [CrossRef] [Google Scholar]
  36. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419:101–109. [CrossRef] [Google Scholar]
  37. Sabin MA, Stewart CE, Crowne EC, et al. Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intramyocellular lipid. J Cell Physiol. 2007;211:244–252. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.