Free Access
Editorial
Issue |
J Extra Corpor Technol
Volume 47, Number 1, March 2015
|
|
---|---|---|
Page(s) | 10 - 15 | |
DOI | https://doi.org/10.1051/ject/201547010 | |
Published online | 15 March 2015 |
- Barbut D, Lo YW, Hartman GS, et al. Aortic atheroma is related to outcome but not numbers of emboli during coronary bypass. Ann Thorac Surg. 1997;64:454–459. [CrossRef] [Google Scholar]
- Barbut D, Grassineau D, Heier L, et al. Radiologic appearances in CABG-related strokes are characteristic of embolic infarction predominantly affecting the posterior circulation. Ann Thorac Surg. 1997;64:922. [Google Scholar]
- Jabur GNS, Willcox TW, Zahidani S, Sidhu K, Mitchell SJ. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter. Perfusion. 2014;29:219–225. [CrossRef] [PubMed] [Google Scholar]
- Willcox TW, Mitchell SJ. Microemboli in our bypass circuits: A contemporary audit. J Extra Corpor Technol. 2009;41:P31–P37. [Google Scholar]
- Aberg T, Kihlgren M. Cerebral protection during open heart surgery. Thorax. 1977;32:525–533. [CrossRef] [PubMed] [Google Scholar]
- Smith PL, Treasure T, Newman S, et al. Cerebral consequences of cardiopulmonary bypass. Lancet. 1986;327:823–825. [CrossRef] [Google Scholar]
- Smith PL. The cerebral complications of coronary artery bypass surgery. Ann R Coll Surg Engl. 1988;70:212–216. [Google Scholar]
- Shaw PJ, Bates D, Cartlidge NEF, et al. Neurologic and neuropsychologic morbidity following major surgery: Comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700–706. [CrossRef] [PubMed] [Google Scholar]
- Williams-Russo PG, Szatrowski TP, Mattis S, et al. Post-operative cognitive deterioration in cardiac vs. non-cardiac surgical patients. Perfusion. 1994;9:409. [Google Scholar]
- Heyer EJ, Delphin E, Adams DC, et al. Cerebral dysfunction after cardiac operations in elderly patients. Ann Thorac Surg. 1995;60:1716–1722. [CrossRef] [Google Scholar]
- Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. J Thorac Cardiovasc Surg. 1995;110:349–362. [CrossRef] [Google Scholar]
- Vingerhoets G, Van Nooten G, Vermassen F. Cognitive outcome following major surgery with and without cardiopulmonary bypass. Ann Thorac Surg. 1997;64:917–926. [CrossRef] [Google Scholar]
- Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402. [CrossRef] [PubMed] [Google Scholar]
- Mora CT, Murkin JM. The central nervous system: Responses to cardiopulmonary bypass. In: Mora CT, ed. Cardiopulmonary Bypass: Principles and Techniques of Extracorporeal Circulation. New York: Springer-Verlag; 1995:114–146. [CrossRef] [Google Scholar]
- Uretsky G, Landsburg G, Cohn D, Wax Y, Borman JB. Analysis of microembolic particles originating in extracorporeal circuits. Perfusion. 1987;2:9–17. [CrossRef] [Google Scholar]
- Blauth CI, Arnold JV, Schulenberg WE, McCartney AC, Taylor KM, Loop FD. Cerebral microembolism during cardiopulmonary bypass: Retinal microvascular studies in vivo with fluorescein angiography. J Thorac Cardiovasc Surg. 1988;95:668–676. [CrossRef] [Google Scholar]
- Butler BD, Kurusz M. Gaseous microemboli: A review. Perfusion. 1990;5:81–99. [CrossRef] [Google Scholar]
- Brown WR, Moody DM, Reboussin DM, et al. Cerebral fat embolism from cardiopulmonary bypass: Causes effects, prevention. Ann Thorac Surg. 1997;64:924. [Google Scholar]
- Mitchell SJ, Willcox T, McDougall C, Gorman DF. Emboli generation by the Medtronic Maxima hardshell adult venous reservoir in cardio-pulmonary bypass circuits: A preliminary report. Perfusion. 1996;11:145–155. [CrossRef] [PubMed] [Google Scholar]
- Willcox TW, Mitchell SJ, Gorman DF. Venous air in the bypass circuit: A source of arterial line emboli exacerbated by vacuum assisted drainage. Ann Thorac Surg. 1999;68:1285–1291. [CrossRef] [Google Scholar]
- Milsom FP, Mitchell SJ. A novel dual vent heart de-airing technique markedly reduces carotid artery microemboli. Ann Thorac Surg. 1998;66:785–791. [CrossRef] [Google Scholar]
- Taylor RL, Borger MA, Weisel RD, Fedorko L, Feindel CM. Cerebral microemboli during cardiopulmonary bypass: Increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68:89–93. [CrossRef] [Google Scholar]
- Hogue CWJr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes: An evidence-based appraisal of current practices. Anesth Analg. 2006;103:21–37. [CrossRef] [PubMed] [Google Scholar]
- Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: A focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–290. [CrossRef] [Google Scholar]
- Selnes OA, Gottesman RF, Grega MA, Baumgartner WA, Zeger SL, McKhann GM. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med. 2012;366:250–257. [CrossRef] [PubMed] [Google Scholar]
- Bartels K, McDonagh DL, Newman MF, Mathew JP. Neurocognitive outcomes after cardiac surgery. Curr Opin Anaesthesiol. 2013;26:91–97. [CrossRef] [PubMed] [Google Scholar]
- Corkey WB, Phillips-Bute B, Baudet B, Mathew JP, Newman MF, Grocott HP. Brief report: The declining incidence of cerebral hyperthermia during cardiac surgery: A seven-year experience in 6,334 patients. Can J Anaesth. 2005;52:626–629. [CrossRef] [PubMed] [Google Scholar]
- Mitchell SJ, Pellet O, Gorman DF. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg. 1999;67:1117–1124. [CrossRef] [Google Scholar]
- Mitchell SJ, Merry AF, Frampton C, et al. Cerebral protection by lidocaine during cardiac operations: A follow-up study. Ann Thorac Surg. 2009;87:820–825. [CrossRef] [Google Scholar]
- Tarakji KG, Sabik JF3rd, Bhudia SK, Batizy LH, Blackstone EH. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA. 2011;305:381–390. [CrossRef] [PubMed] [Google Scholar]
- Ghanta RK, Kaneko T, Gammie JS, Sheng S, Aranki SF. Evolving trends of reoperative coronary artery bypass grafting: An analysis of the Society of Thoracic Surgeons Adult Cardiac Surgery Database. J Thorac Cardiovasc Surg. 2013;145:364–372. [CrossRef] [Google Scholar]
- Kruis RWJ, Vlasveld FAE, Van Dijk D. The (un)importance of cerebral microemboli. Semin Cardiothorac Vasc Anesth. 2010;14:111–118. [CrossRef] [PubMed] [Google Scholar]
- Stump DA, Tegeler CH, Rogers AT, et al. Neuropsychological deficits are associated with the number of emboli detected during cardiac surgery. Stroke. 1993;24:509. [Google Scholar]
- Clark RE, Brillman J, Davis DA, Lovell MR, Price TR, Magovern GJ. Microemboli during coronary artery bypass grafting: Genesis and effect on outcome. J Thorac Cardiovasc Surg. 1995;109:249–258. [CrossRef] [Google Scholar]
- Stump DA, Fedorko L, Brooker R, Hilbawi H, Kon NA, Hammon JW. Biochemical markers of brain injury, embolic load, bypass time and neurobehavioural deficits after CABG surgery: Is there a relationship. Ann Thorac Surg. 1997;64:920. [Google Scholar]
- Arrowsmith JE, Stygall J, Timberlake N, et al. Correlation between middle cerebral artery microemboli and neuropsychological deficits following cardiopulmonary bypass with a membrane oxygenator. Ann Thorac Surg. 1997;64:924. [Google Scholar]
- Hammon JW, Stump DA, Kon ND, et al. Risk factors and solutions for the development of neurobehavioral changes after coronary artery bypass grafting. Ann Thorac Surg. 1997;63:1613–1618. [CrossRef] [Google Scholar]
- Gerriets T, Schwarz N, Sammer G, et al. Protecting the brain from gaseous and solid micro-emboli during coronary artery bypass grafting: A randomized controlled trial. Eur Heart J. 2010;31:360–368. [CrossRef] [PubMed] [Google Scholar]
- Doganci S, Gunaydin S, Murat Kocak O, Yilmaz S, Demirkilic U. Impact on the intensity of microemboli on neurocognitive outcome following cardiopulmonary bypass. Perfusion. 2014;28:256–262. [Google Scholar]
- Scott DA, Evered LA, Gerraty RB, MacIsaac A, Lai-Kwon J, Silbert BS. Cognitive dysfunction follows left heart catheterisation but is not related to microembolic count. Int J Cardiol. 2014;175:67–71. [CrossRef] [Google Scholar]
- Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg. 2011;112:1179–1185. [CrossRef] [PubMed] [Google Scholar]
- Scott DA, Silbert BS, Evered LA. Anesthesia and Alzheimer’s disease: Time to wake up! Int Psychogeriatr. 2013;25:341–344. [CrossRef] [PubMed] [Google Scholar]
- Silbert B, Evered LA, Scott DA, Maruff P. Anesthesiology must play a greater role in patients with Alzheimer’s disease. Anesth Analg. 2011;112:1242–1245. [CrossRef] [PubMed] [Google Scholar]
- Silbert BS, Evered LA, Scott DA. Incidence of postoperative cognitive dysfunction after general or spinal anaesthesia for extracorporeal shock wave lithotripsy. Br J Anaesth. 2014;113:784–791. [CrossRef] [Google Scholar]
- Van Dijk D, Kalkman CJ. Why are cerebral microemboli not associated with cognitive decline? Anesth Analg. 2009;109:1006–1008. [CrossRef] [PubMed] [Google Scholar]
- Francis TJR, Mitchell SJ. The pathophysiology of decompression sickness. In: Brubakk AO, Neuman TS, eds. Bennett and Elliott’s Physiology and Medicine of Diving (5th ed) London: Harcourt Publishers; 2003:530–556. [Google Scholar]
- Chryssanthou C, Springer M, Lipschitz S. Blood brain and bloodlung barrier disruption by dysbaric exposure. Undersea Biomed Res. 1977;4:117–129. [Google Scholar]
- Chryssanthou C, Graber B, Mendelson S, Goldstein G. Increased blood brain barrier permeability to tetracycline in rabbits under dysbaric conditions. Undersea Biomed Res. 1979;6:319–328. [Google Scholar]
- Nohara A, Yusa T. Reversibility in blood brain barrier, microcirculation, and histology in rat brain after decompression. Undersea Hyperb Med. 1997;24:15–21. [Google Scholar]
- Hills BA, James PB. Microbubble damage to the blood-brain barrier: Relevance to decompression sickness. Undersea Biomed Res. 1991;18:111–116. [Google Scholar]
- Helps SC, Parsons DW, Reilly PL, Gorman DF. The effect of gas emboli on rabbit cerebral blood flow. Stroke. 1990;21:94–99. [CrossRef] [PubMed] [Google Scholar]
- Helps SC, Meyer-Witting M, Reilly PL, Gorman DF. Increasing doses of intracarotid air and cerebral blood flow in rabbits. Stroke. 1990;21:1340–1345. [CrossRef] [PubMed] [Google Scholar]
- Dutka AJ, Kochanek PM, Hallenbeck JM. Influence of granulocytopenia on canine cerebral ischaemia induced by air embolism. Stroke. 1989;20:390–395. [CrossRef] [PubMed] [Google Scholar]
- Helps SC, Gorman DF. Air embolism of the brain in rabbits pretreated with mechlorethamine. Stroke. 1991;22:351–354. [CrossRef] [PubMed] [Google Scholar]
- Gipson KE, Rosinski DJ, Schonberger RB, et al. Elimination of gaseous microemboli from cardiopulmonary bypass using hypobaric oxygenation. Ann Thorac Surg. 2014;97:879–887. [CrossRef] [Google Scholar]
- Mitchell SJ, Gorman DF. The pathophysiology of cerebral arterial gas embolism. J Extra Corpor Technol. 2002;34:18–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Juenemann M, Yeniguen M, Schleicher N, et al. Impact of bubble size in a rat model of cerebral air microembolization. J Cardiothorac Surg. 2013;8:198. [CrossRef] [Google Scholar]
- Jungworth B, Kellerman K, Blobner M, Schmehl W, Kochs EF, Mackensen GB. Cerebral air emboli differentially alter outcome after cardiopulmonary bypass in rats compared with normal circulation. Anesthesiology. 2007;107:768–775. [CrossRef] [PubMed] [Google Scholar]
- Deklunder G, Roussel M, Lecroart J-L, Prat A, Gautier C. Microemboli in cerebral circulation and alteration of cognitive abilities in patients with mechanical prosthetic heart valves. Stroke. 1998; 29:1821–1826. [CrossRef] [PubMed] [Google Scholar]
- Christin F, Bouffard Y, Rossi R, Delafosse B. Paradoxical symptomatic air embolism after saline contrast transesophageal echocardiography. Echocardiography. 2007;24:867–869. [CrossRef] [PubMed] [Google Scholar]
- Srivastava TN, Undesser EK. Transient ischemic attack after air contrast echocardiography in patients with septal aneurysm. Ann Intern Med. 1995;122:396. [CrossRef] [PubMed] [Google Scholar]
- Sastry S, Daly K, Chengodu T, McCollum C. Is transcranial Doppler for the detection of venous-to-arterial circulation shunts reproducible? Cerebrovasc Dis. 2007;23:424–429. [CrossRef] [PubMed] [Google Scholar]
- Cantais E, Louge P, Suppini A, Foster PP, Palmier B. Right-to-left shunt and risk of decompression illness with cochleovestibular and cerebral symptoms in divers: Case-control study in 101 consecutive dive accidents. Crit Care Med. 2003;31:84–88. [CrossRef] [PubMed] [Google Scholar]
- Francis TJR, Mitchell SJ. Manifestations of decompression disorders. In: Brubakk AO, Neuman TS, eds. Bennett and Elliott’s Physiology and Medicine of Diving (5th ed). London: Harcourt Publishers; 2003:578–599. [Google Scholar]
- Hills BA, Butler BD. Size distribution of intravascular air emboli produced by decompression. Undersea Biomed Res. 1981;8:163–170. [Google Scholar]
- Polkinghorne PJ, Sehmi K, Cross MR, Minassian D, Bird AC. Ocular fundus lesions in divers. Lancet. 1988;8625:1382–1383. [Google Scholar]
- Mitchell SJ, Doolette DJ. Selective vulnerability of the inner ear to decompression sickness in divers with right to left shunt: The role of tissue gas supersaturation. J Appl Physiol. 2009;106:298–301. [CrossRef] [PubMed] [Google Scholar]
- Marx R. Radiation injury to tissue. In: Kindwall EP, Whelan HT, eds. Hyperbaric Medicine Practice. Flagstaff, AZ: Best Publishing; 1999:665–724. [Google Scholar]
- Martin KK, Wigginton JB, Babikian VL, Pochay VE, Crittenden MD, Rudolph JL. Intraoperative cerebral high-intensity transient signals and postoperative cognitive function: A systematic review. Am J Surg. 2009;197:55–63. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.