Free Access
Issue |
J Extra Corpor Technol
Volume 48, Number 3, September 2016
|
|
---|---|---|
Page(s) | 141 - 147 | |
DOI | https://doi.org/10.1051/ject/201648141 | |
Published online | 15 September 2016 |
- Grossfeld P. D. Hypoplastic left heart syndrome: It is all in the genes. J Am Coll Cardiol. 2007;50:1596–7. [CrossRef] [Google Scholar]
- Miyaji K., Kohira S., Miyamoto T., et al. Pediatric cardiac surgery without homologous blood transfusion, using a miniaturized bypass system in infants with lower body weight. J Thorac Cardiovasc Surg. 2007;134:284–9. [CrossRef] [Google Scholar]
- Forest R. J., Groom R. C., Quinn R., Donnelly J., Clark C. Repair of hypoplastic left heart syndrome of a 4.25-kg Jehovah's witness. Perfusion. 2002;17:221–5. [CrossRef] [PubMed] [Google Scholar]
- Karimi M., Florentino-Pineda I., Weatherred T., et al. Blood conservation operations in pediatric cardiac patients: A paradigm shift of blood use. Ann Thorac Surg. 2013;95:962–7. [CrossRef] [Google Scholar]
- Galantowicz M., Cheatam J. P., Phillips A., et al. Hybrid approach for hypoplastic left heart syndrome: Intermediate results after the learning curve. Ann Thorac Surg. 2008;85:2063–71. [CrossRef] [Google Scholar]
- Rocha-e-Silva R., Mola R., Santos E., et al. Surgical correction of hypoplastic left heart syndrome: A new approach. Clinics (Sao Paulo). 2012;67:535–9. [CrossRef] [PubMed] [Google Scholar]
- Avgerinos D. V., DeBois W., Salemi A. Blood conservation strategies in cardiac surgery: More is better. Eur J Cardiothorac Surg. 2014;46:865–70. [CrossRef] [PubMed] [Google Scholar]
- Székely A., Cserép Z., Sápi E., et al. Risks and predictors of blood transfusion in pediatric patients undergoing open heart operations. Ann Thorac Surg. 2009;87:187–97. [CrossRef] [Google Scholar]
- Ratliff T. M., Hodge A. B., Preston T. J., Galantowicz M., Naguib A., Gomez D. Bloodless pediatric cardiopulmonary bypass for a 3.2-kg patient whose parents are of Jehovah's Witness faith. J Extra Corpor Technol. 2014;46:173–6. [PubMed] [Google Scholar]
- Naguib A. N., Winch P. D., Tobias J. D., et al. A single-center strategy to minimize blood transfusion in neonates and children undergoing cardiac surgery. Paediatr Anaesth. 2015;25:477–86. [CrossRef] [Google Scholar]
- Dewhirst E., Naguib A., Winch P., et al. Accuracy of noninvasive and continuous hemoglobin measurement by pulse co-oximetry during preoperative phlebotomy. J Intensive Care Med. 2014;29:238–42. [CrossRef] [PubMed] [Google Scholar]
- Dewhirst E., Winch P., Naguib A., Galantowicz M., Tobias J. D. Cerebral oximetry monitoring during preoperative phlebotomy to limit allogeneic blood use in patients undergoing cardiac surgery. Pediatr Cardiol. 2013;34:75–80. [CrossRef] [PubMed] [Google Scholar]
- Naguib A., Dewhirst E., Winch P., Simsic J., Galantowicz M., Tobias J. D. Pain management after comprehensive stage 2 repair for hypoplastic left heart syndrome. Pediatr Cardiol. 2013;34:52–8. [CrossRef] [PubMed] [Google Scholar]
- Tempe D. K., Virmani S. Coagulation abnormalities in patients with cyanotic congenital heart disease. J Cardiothorac Vasc Anesth. 2002;16:752–65. [CrossRef] [Google Scholar]
- Guay J., de Moerloose P., Lasne D. Minimizing perioperative blood loss and transfusions in children. Can J Anaesth. 2006;53:59–67. [Google Scholar]
- Jonas R. A., Wypij D., Roth S. J., et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: Results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–74. [CrossRef] [Google Scholar]
- Mackie A. S., Alton G. Y., Dinu I. A., et al. Clinical outcome score predicts the need for neurodevelopmental intervention after infant heart surgery. J Thorac Cardiovasc Surg. 2013;145:1248–54. [CrossRef] [Google Scholar]
- Wypij D., Jonas R. A., Bellinger D. C., et al. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: Results from the combined Boston hematocrit trials. J Thorac Cardiovasc Surg. 2008;135:355–60. [CrossRef] [Google Scholar]
- Newburger J. W., Jonas R. A., Soul J., et al. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135:347–54. [CrossRef] [Google Scholar]
- Hirsch J. C., Jacobs M. L., Andropoulos D., et al. Protecting the infant brain during cardiac surgery: A systematic review. Ann Thorac Surg. 2012;94:1365–73. [CrossRef] [Google Scholar]
- Gaynor J. W., Stopp C., Wypij D., et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015;135:816–25. [CrossRef] [PubMed] [Google Scholar]
- Holmes J. H., Connolly N. C., Paull D. L., et al. Magnitude of the inflammatory response to cardiopulmonary bypass and its relation to adverse clinical outcomes. Inflamm Res. 2002;51:579–86. [CrossRef] [PubMed] [Google Scholar]
- Naguib A. N., Tobias J. D., Hall M. W., et al. The Role of different anesthetic techniques in altering the stress response during cardiac surgery in children: A prospective, double-blinded, and randomized study. Pediatr Crit Care Med. 2013;14:481–90. [CrossRef] [PubMed] [Google Scholar]
- Tallman R. D., Dumond M., Brown D. Inflammatory mediator removal by zero-balance ultrafiltration during cardiopulmonary bypass. Perfusion. 2002;17:111–5. [CrossRef] [PubMed] [Google Scholar]
- Guzzetta N. A., Bajaj T., Fazlollah T., et al. A comparison of heparin management strategies in infants undergoing cardiopulmonary bypass. Anesth Analg. 2008;106:419–25. [CrossRef] [PubMed] [Google Scholar]
- Guzzetta N. A., Monitz H. G., Fernandez J. D., Fazlollah T. M., Knezevic A., Miller B. E. Correlations between activated clotting time values and heparin concentration measurements in young infants undergoing cardiopulmonary bypass. Anesth Analg. 2010;111:173–9. [CrossRef] [PubMed] [Google Scholar]
- Guzzetta N. A., Miller B. E., Todd K., Szlam F., Moore R. H., Tosone S. R. An evaluation of the effects of a standard heparin dose on thrombin inhibition during cardiopulmonary bypass in neonates. Anesth Analg. 2005;100:1276–82. [CrossRef] [PubMed] [Google Scholar]
- Wesley M. C., Pereira L. M., Scharp L. A., Emani S. M., McGowan F. X.Jr, DiNardo J. A. Pharmacokinetics of tranexamic acid in neonates, infants, and children undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology. 2015;122:746–58. [CrossRef] [PubMed] [Google Scholar]
- Winch P. D., Naguib A. N., Bradshaw J. R., Galantowicz M., Tobias J. D. Decreasing the need for transfusion: Infant cardiac surgery using hemodilution and recombinant factor VIIa. Pediatr Cardiol. 2013;34:119–24. [CrossRef] [PubMed] [Google Scholar]
- Richardson A., Herbertson M., Gill R. The role of recombinant activated factor VII in cardiac surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2009;1:9–12. [Google Scholar]
- Cholette J. M., Rubenstein J. S., Alfieris G. M., Powers K. S., Eaton M., Lerner N. B. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: Results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med. 2011;12:39–45. [CrossRef] [PubMed] [Google Scholar]
- Najafi M., Faraoni D. Hemoglobin optimization and transfusion strategies in patients undergoing cardiac surgery. World J Cardiol. 2015;7:377–82. [CrossRef] [Google Scholar]
- Mazine A., Rached-D'Astous S., Ducruet T., Lacroix J., Poirier N. Pediatric Acute Lung Injury and Sepsis Investigators Network. Blood transfusions after pediatric cardiac operations: A North American multicenter prospective study. Ann Thorac Surg. 2015;100:671–7. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.