Free Access
Issue |
J Extra Corpor Technol
Volume 48, Number 3, September 2016
|
|
---|---|---|
Page(s) | 137 - 140 | |
DOI | https://doi.org/10.1051/ject/201648137 | |
Published online | 15 September 2016 |
- Roach G. W., Kanchuger M., Mangano C. M., et al. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med. 1996;335:1857–63. [CrossRef] [PubMed] [Google Scholar]
- Goldstone A. B., Bronster D. J., Anyanwu A. C., et al. Predictors and outcomes of seizures after cardiac surgery: A multivariable analysis of 2,578 patients. Ann Thorac Surg. 2011;91:514–9. [CrossRef] [Google Scholar]
- Sharma V., Katznelson R., Jerath A., et al. The association between tranexamic acid and convulsive seizures after cardiac surgery: A multivariate analysis in 11 529 patients. Anaesthesia. 2014;69:124–30. [CrossRef] [Google Scholar]
- Manji R. A., Grocott H. P., Leake J., et al. Seizures following cardiac surgery: The impact of tranexamic acid and other risk factors. Can J Anaesth. 2012;59:6–13. [CrossRef] [PubMed] [Google Scholar]
- Kalavrouziotis D., Voisine P., Mohammadi S., Dionne S., Dagenais F. High-dose tranexamic acid is an independent predictor of early seizure after cardiopulmonary bypass. Ann Thorac Surg. 2012;93:148–55. [CrossRef] [Google Scholar]
- Harrison M. J. G. Neurologic complications of coronary artery bypass grafting: Diffuse of focal ischemia? Ann Thorac Surg. 1995;59:1356–8. [CrossRef] [Google Scholar]
- Hunter G. R. W., Young G. B. Seizures after cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25:299–305. [CrossRef] [Google Scholar]
- Muth C. M., Shank E. S. Gas Embolism. N Engl J Med. 2000;342:476–82. [CrossRef] [PubMed] [Google Scholar]
- Hogue C. W., Palin C. A., Arrowsmith J. E. Cardiopulmonary bypass management and neurologic outcomes: An evidence-based appraisal of current practices. Anesth Analg. 2006;103:21–37. [CrossRef] [PubMed] [Google Scholar]
- Caplan L. R., Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55:1475–82. [CrossRef] [PubMed] [Google Scholar]
- Mitchell S. J., Willcox T., McDougal C., Gorman D. F. Emboli generation by the Medtronic Maxima hard-shell adult venous reservoir in cardiopulmonary bypass circuits: A preliminary report. Perfusion. 1996;11:145–55. [CrossRef] [PubMed] [Google Scholar]
- Mitchell S. J., Willcox T., Gorman D. F. Bubble generation and venous air filtration by hard-shell venous reservoirs: A comparative study. Perfusion. 1997;12:325–33. [CrossRef] [PubMed] [Google Scholar]
- Doganci S., Gunaydin S., Murat Kocak O., Yilmaz S., Demirkilic U. Impact of the intensity of microemboli on neurocognitive outcome following cardiopulmonary bypass. Perfusion. 2013;28:256–62. [CrossRef] [PubMed] [Google Scholar]
- Jabur G. N. S., Willcox T. W., Zahidani S. H., Sidhu K., Mitchell S. J. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter. Perfusion. 2014;29:219–25. [CrossRef] [PubMed] [Google Scholar]
- Brooker R. F., Brown W. R., Moody D. M., et al. Cardiotomy suction: A major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg. 1998;65:1651–5. [CrossRef] [Google Scholar]
- Gold J. P., Charlson M. E., Williams-Russo P., et al. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg. 1995;110:1302–11; discussion 1311–14. [CrossRef] [PubMed] [Google Scholar]
- Charlson M. E., Peterson J. C., Krieger K. H., et al. Improvement of outcomes after coronary artery bypass II: A randomized trial comparing intraoperative high versus customized mean arterial pressure. J Card Surg. 2007;22:465–72. [CrossRef] [PubMed] [Google Scholar]
- Engelman R., Baker R. A., Likosky D. S., et al. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of Extracorporeal Technology: Clinical practice guidelines for cardiopulmonary bypass- temperature management during cardiopulmonary bypass. Ann Thorac Surg. 2015;100:748–57. [CrossRef] [Google Scholar]
- Brown J. R., Birkmeyer N. J. O., O'Connor G. T. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation. 2007;115:2801–13. [CrossRef] [PubMed] [Google Scholar]
- Murkin J., Falter F., Granton J., Young B., Burt C., Chu M. High-dose tranexamic acid is associated with nonischemic clinical seizures in cardiac surgical patients. Anesth Analg. 2010;110:350–3. [CrossRef] [PubMed] [Google Scholar]
- Koster A., Börgermann J., Zitterman A., Lueth J. U., Gillis-Januszewski T., Schimer U. Moderate dosage of tranexamic acid during cardiac surgery with cardiopulmonary bypass and convulsive seizures: Incidence and clinical outcome. Br J Anaesth. 2012;110:34–40. [Google Scholar]
- Tranexamic Acid [package insert]. Hospira Pty Ltd., Melbourne, VIC; 2015. [Google Scholar]
- Lecker I., Wang D., Romaschin A. D., Peterson M., Mazer C. D., Orser B. A. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J Clin Invest. 2012;122:4654–66. [CrossRef] [PubMed] [Google Scholar]
- Furtmuller R., Schlag M. G., Berger M., et al. Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid (A) receptor antagonistic effect. J Pharmacol Exp Ther. 2002;301:168–73. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.