Free Access
Issue
J Extra Corpor Technol
Volume 49, Number 1, March 2017
Page(s) 44 - 48
Published online 15 March 2017
  1. Herbst D. P., Najm H. K. Development of a new arterial-line filter design using computational fluid dynamics analysis. J Extra Corpor Technol. 2012;44:140–5. [Google Scholar]
  2. Herbst D. P. The effects of pressure on gases in solution: Possible insights to improve microbubble filtration for extracorporeal circulation. J Extra Corpor Technol. 2013;45:94–106. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Riley J. B. Arterial line filters ranked for gaseous micro-emboli separation performance: An in vitro study. J Extra Corpor Technol. 2008;40:21–6. [Google Scholar]
  4. Herbst D. P. Sequential blood filtration for extracorporeal circulation: Initial results from a proof-of-concept prototype. J Extra Corpor Technol. 2014;46:239–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Potger K. C., McMillan D., Ambrose M. Air transmission comparison of the Affinity fusion oxygenator with an integrated arterial filter to the Affinity NT oxygenator with a separate arterial filter. J Extra Corpor Technol. 2014;46:229–38. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Yarham G., Mulholland J. Pre-clinical laboratory evaluation of the new ‘AF’ arterial line filter range. Perfusion. 2010;25:267–76. [CrossRef] [PubMed] [Google Scholar]
  7. Liu S., Newland R. F., Tully P. J., Tuble S. C., Baker R. A. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. J Extra Corpor Technol. 2011;43:107–14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Mueller X. M., Tevaearai H. T., Jegger D., Augstburger M., Burki M., von Segesser L. K. Ex vivo testing of the Quart arterialx line filter. Perfusion. 1999;14:481–7. [CrossRef] [PubMed] [Google Scholar]
  9. Jabur G. N. S., Wilcox T. W., Zahidani S. H., Sidhu K., Mitchell S. J. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter. Perfusion. 2014;29:219–25. [CrossRef] [PubMed] [Google Scholar]
  10. Jones T. J., Deal D. D., Vernon J. C., Blackburn N., Stump D. A. How effective are cardiopulmonary bypass circuits at removing gaseous microemboli? J Extra Corpor Technol. 2002;34:34–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Norman M. J., Sistino J. J., Acsell J. R. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli. J Extra Corpor Technol. 2004;36:336–42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Willcox T. W., Mitchell S. J. Microemboli in our bypass circuits: A contemporary audit. J Extra Corpor Technol. 2009;41:31–7. [Google Scholar]
  13. Burnside J., Gomez D., Preston T. J., Olshove V. F., Phillips A. In-vitro quantification of gaseous microemboli in two extracorporeal life support circuits. J Extra Corpor Technol. 2011;43:123–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Weitkemper H. H., Oppermann B., Spilker A., Knobl H. J., KÖrfer R. Gaseous microemboli and the influence of microporous membrane oxygenators. J Extra Corpor Technol. 2005;37:256–64. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Dickinson T. A., Riley J. B., Crowley J. C., Zabetakis P. M. In vitro evaluation of the air separation ability of four cardiovascular manufacturer extracorporeal circuit designs. J Extra Corpor Technol. 2006;38:206–13. [Google Scholar]
  16. Herbst D. P. YouTube. Flow and buoyancy: Part three (video on the Internet). November 30, 2015. Available at: https://youtu.be/4BMm9RXJgfQ/. YouTube. Accessed December 30, 2015 [Google Scholar]
  17. Herbst D. P. Effects of purge-flow rate on microbubble capture in radial arterial-line filters. J Extra Corpor Technol. 2016;48:105–12. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Galletti P. M., Brecher G. A. Heart-Lung Bypass: Principles and Techniques of Extracorporeal Circulation. New York, NY: Grune & Stratton; 1962:154–159. [Google Scholar]
  19. Herbst D. P. Working toward best practice: Microbubble filtration and patient safety during extracorporeal circulation. J Extra Corpor Technol. 2015;47:125–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.