Free Access
Issue |
J Extra Corpor Technol
Volume 49, Number 2, June 2017
|
|
---|---|---|
Page(s) | 81 - 92 | |
DOI | https://doi.org/10.1051/ject/201749081 | |
Published online | 15 June 2017 |
- Starr A. Oxygen consumption during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1959;38:46–56. [CrossRef] [PubMed] [Google Scholar]
- Boettcher W., Merkle F., Weitkemper H. H. History of extracorporeal circulation: The invention and modification of blood pumps. J Extra Corpor Technol. 2003;35:184–91. [PubMed] [Google Scholar]
- Iwahashi H., Yuri K., Nosé Y. Development of the oxygenator: Past, present, and future. J Artif Organs. 2004;7:111–20. [CrossRef] [PubMed] [Google Scholar]
- Haworth W. S. The development of the modern oxygenator. Ann Thorac Surg. 2003;76:S2216–9. [CrossRef] [PubMed] [Google Scholar]
- Goodin M. S., Thor E. J., Haworth W. S. Use of computational fluid dynamics in the design of the Avecor Affinity oxygenator. Perfusion. 1994;9:217–22. [CrossRef] [PubMed] [Google Scholar]
- Onorati F., Santini F., Raffin F., et al. Clinical evaluation of new generation oxygenators with integrated arterial line filters for cardiopulmonary bypass. Artif Organs. 2012;36:875–85. [CrossRef] [PubMed] [Google Scholar]
- Stammers A. H., Christensen K. A., Lynch J., Zavadil D. P., Deptula J. J., Sydzyik R. T. Quantitative evaluation of heparin coated versus non-heparin coated bypass circuits during cardiopulmonary bypass. J Extra Corpor Technol. 1999;31:135–41. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Peek G. J., Killer H. M., Reeves R., Sosnowski A. W., Firmin R. K. Early experience with a polymethyl pentene oxygenator for adult extracorporeal life support. ASAIO J. 2002;48:480–2. [CrossRef] [PubMed] [Google Scholar]
- Khoshbin E., Roberts N., Harvey C., et al. Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation. ASAIO J. 2005;51:281–7. [CrossRef] [PubMed] [Google Scholar]
- Myers G. J., Gardiner K., Ditmore S. N., et al. Clinical evaluation of the Sorin synthesis oxygenator with integrated arterial filter. J Extra Corpor Technol. 2005;37:201–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Argerakis P. W., Johnson K. A., Burdan M. L., Ozdirik J. E. A retrospective comparison of blood transfusion requirements during cardiopulmonary bypass with two different small adult oxygenators. Perfusion. 2013;28:541–5. [CrossRef] [PubMed] [Google Scholar]
- Ginther R. M.Jr, Gorney R., Cruz R. A clinical evaluation of the Maquet Quadrox-i neonatal oxygenator with integrated arterial filter. Perfusion. 2013;28:194–9. [CrossRef] [PubMed] [Google Scholar]
- Gomez D., Preston T. J., Olshove V. F., Philips A. B., Galantowicz M. E. Evaluation of air handling in a new generation neonatal oxygenator with integral arterial filter. Perfusion. 2009;24:107–12. [CrossRef] [PubMed] [Google Scholar]
- Qiu F., Peng S., Kunselman A., Ündar A. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line. Artif Organs. 2010;34:1053–7. [CrossRef] [PubMed] [Google Scholar]
- Liu S., Newland R. F., Tully P. J., Tuble S. C., Baker R. A. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. J Extra Corpor Technol. 2011;43:107–14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Potger K. C., McMillan D., Ambrose M. Air transmission comparison of the affinity fusion oxygenator with an integrated arterial filter to the affinity NT oxygenator with a separate arterial filter. J Extra Corpor Technol. 2014;46:229–38. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Stehouwer M. C., Boers C., de Vroege R., Kelder J. C., Yilmaz A., Bruins P. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit. Int J Artif Organs. 2011;34:374–82. [CrossRef] [PubMed] [Google Scholar]
- Nuszkowski M. M., Deutsch N., Jonas R. A., Zurakowski D., Montague E., Holt D. W. Randomized trial of the Terumo Capiox FX05 oxygenator with integral arterial filter versus Terumo Capiox Baby RX05 and Terumo Capiox AF02 arterial filter in infants undergoing cardiopulmonary bypass. J Extra Corpor Technol. 2011;43:207–14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ganushchak Y. M., Reesink K. D., Weerwind P. W., Maessen J. G. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass. Perfusion. 2011;26:39–44. [CrossRef] [PubMed] [Google Scholar]
- Vanden Eynden F., Carrier M., Ouellet S., et al. Avecor Trillium oxygenator versus noncoated Monolyth oxygenator: A prospective randomized controlled study. J Card Surg. 2008;23:288–93. [CrossRef] [PubMed] [Google Scholar]
- Gürsu Z., Isbir S., Ak K., Gerin F., Arsan S. Comparison of new technology integrated and nonintegrated arterial filters used in cardiopulmonary bypass surgery: A randomized, prospective, and single blind study. BioMed Res Int. 2013:. 529087 [Google Scholar]
- Ranucci M., Romitti F., Isgrò G. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80:2213–20. [CrossRef] [PubMed] [Google Scholar]
- Ng R. R. G., Chew S. T. H., Liu W., Ti L. K. Persistent kidney injury at hospital discharge after cardiac surgery with cardiopulmonary bypass in patients with normal preoperative serum creatinine and normal estimated glomerular filtration rate. J Cardiothorac Vasc Anesth. 2014;28:1453–8. [CrossRef] [PubMed] [Google Scholar]
- de Somer F., Mulholland J. W., Bryan M. R. O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury: Time for a goal-directed perfusion management? Crit Care. 2011;15:R192. [CrossRef] [PubMed] [Google Scholar]
- Magruder J. T., Dungan S. P., Grimm J. C., et al. Nadir oxygen delivery on bypass and hypotension increase acute kidney injury risk after cardiac operations. Ann Thorac Surg. 2015;100:1697–703. [CrossRef] [PubMed] [Google Scholar]
- Stammers A. H., Trowbridge C. C., Pezzuto J., Casale A. Perfusion quality improvement and the reduction of clinical variability. J Extra Corpor Technol. 2009;1:48–58. [Google Scholar]
- Venema L. H., Sharma A. S., Simons A. P., Bekers O., Weerwind P. W. Contemporary oxygenator design relative to hemolysis. J Extra Corpor Technol. 2014;6:212–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- de Somer F. Does contemporary oxygenator design influence haemolysis? Perfusion. 2013;28:280–5. [CrossRef] [PubMed] [Google Scholar]
- Lahanas A., Argerakis P. W., Johnson K. A., Burdan M. L., Ozdirik J. E. A retrospective comparison of blood transfusion requirements during cardiopulmonary bypass with two different small adult oxygenators. Perfusion. 2013;28:541–5. [CrossRef] [PubMed] [Google Scholar]
- Myers G. J. Understanding off-label use and reference blood flows in modern membrane oxygenators. J Extra Corpor Technol. 2014;46:192–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Stanzel R. D. P., Henderson M. Clinical evaluation of contemporary oxygenators. Perfusion. 2016;31:15–25. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.