Free Access
Review
Issue
J Extra Corpor Technol
Volume 49, Number 3, September 2017
Page(s) 174 - 181
DOI https://doi.org/10.1051/ject/201749174
Published online 15 September 2017
  1. Starling EH On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26. [CrossRef] [PubMed] [Google Scholar]
  2. Weinbaum S, Tarbell J, Damiano E The structure and function of the endothelial glycocalyx layer. Ann Rev Biomed Eng (NY). 2007;9:121–67. [CrossRef] [PubMed] [Google Scholar]
  3. Pries AR, Secomb TW, Gaehtgens P The endothelial surface layer. Pflugers Arch. 2000;440:653–66. [CrossRef] [PubMed] [Google Scholar]
  4. Danielli JF Capillary permeability and edema in the perfused frog. J Cell Physiol. 1940;98:109–29. [Google Scholar]
  5. Chambers R, Zweifach BW Intercellular cement of capillary permeability. Physiol Rev. 1947;27:436–63. [CrossRef] [PubMed] [Google Scholar]
  6. Luft JH Fine structures of capillary and end capillary layer as revealed by ruthenium red. Fed Proc. 1966;25:1773–83. [PubMed] [Google Scholar]
  7. Reitsma S, Slaff DW, Vink H, et al. The endothelial glycocalyx: Composition, function and visualization. Eur J Physiol. 2007;454:345–59. [CrossRef] [PubMed] [Google Scholar]
  8. Weinbaum S Models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann Biomed Eng. 1998;26:627–43. [CrossRef] [PubMed] [Google Scholar]
  9. Michel CC Fluid exchange in the microcirculation – starling: The formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol. 1997;82:1–30. [CrossRef] [PubMed] [Google Scholar]
  10. Rehm M, Zahler S, Lotsch M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100:1211–23. [CrossRef] [PubMed] [Google Scholar]
  11. Jacob M, Bruegger D, Rehm Met al. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology. 2006;104:1223–31. [CrossRef] [PubMed] [Google Scholar]
  12. Levick JR Revision of the Starling principle: New views of tissue fluid balance. J Physiol. 2004;557:704. [CrossRef] [PubMed] [Google Scholar]
  13. Curry FR Microvascular solute and water transport. Microcirculation. 2005;12:17–31. [CrossRef] [PubMed] [Google Scholar]
  14. Woodcock TE, Woodcock TM Revised Starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94. [CrossRef] [PubMed] [Google Scholar]
  15. Myburgh JA Fluid resuscitation in acute illness: Time to reappraise the basics. N Engl J Med. 2011;364:2543–4. [CrossRef] [PubMed] [Google Scholar]
  16. Chappell D, Jacob M, Paul O, et al. Impaired glycocalyx barrier properties and increased capillary tube hematocrit. J Physiol. 2008;586:4585–6. [CrossRef] [PubMed] [Google Scholar]
  17. US National Research Council. Transforming Glycoscience: A roadmap for the future. 2012 Available at: http://dels.nas.edu/Report/Transforming-Glycoscience-Roadmap/13446. [Google Scholar]
  18. Bartlett GR Organization of red cell glycolytic enzymes; cell coat phosphorus transfer. Ann N Y Acad Sci. 1958;75:110–4. [Google Scholar]
  19. Varki A Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446:1023–29. [CrossRef] [PubMed] [Google Scholar]
  20. Rehm M, Haller M, Orth V, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% Hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95:849–56. [CrossRef] [PubMed] [Google Scholar]
  21. Edwards MR, Mythen MG Fluid therapy in critical illness. Extrem Physiol Med. 2014;3:16. [CrossRef] [PubMed] [Google Scholar]
  22. Perrin RM, Harper SJ, Bates DO A role for endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys. 2007;49:65–72. [CrossRef] [PubMed] [Google Scholar]
  23. Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–906. [CrossRef] [PubMed] [Google Scholar]
  24. Nieuwdorp M, Marijn C, Mooij HL, et al. Measuring endothelial glycocalyx dimensions in humans: A potential novel tool to monitor vascular vulnerability. J Appl Physiol (1985). 2008;104:845–52. [CrossRef] [PubMed] [Google Scholar]
  25. Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1993–9. [CrossRef] [PubMed] [Google Scholar]
  26. Henrich M, Gruss M, Weigand MA Sepsis induced degradation of endothelial glycocalyx. ScientificWorldJournal. 2010;10:917–23. [CrossRef] [PubMed] [Google Scholar]
  27. Bai K, Wang W Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface. 2012;9:2290–8. [CrossRef] [PubMed] [Google Scholar]
  28. Bruegger D, Rehm M, Jacob M, et al. Exogenous nitric oxide requires an endothelial glycocalyx to prevent post-ischemic coronary vascular leak in guinea pig hearts. Crit Care. 2008;12:R73. [CrossRef] [PubMed] [Google Scholar]
  29. Gouverneur M, Spaan JA, Pannekoek H, et al. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol. 2006;290:H458–52. [CrossRef] [PubMed] [Google Scholar]
  30. Schott U, Solomon C, Fries D, et al. The endothelial glycocalyx and its disruption, protection and regeneration: A narrative review. Scand J Trauma Resus Emerg Med. 2016;24. [CrossRef] [Google Scholar]
  31. Nelson A, Statkevicius S, Shott U, et al. Effects of fresh frozen plasma, Ringer’s acetate and albumin on plasma volume and on circulating glycocalyx components following haemorrhagic shock in rats. Int Care Med Exp 2016;4:6. [CrossRef] [Google Scholar]
  32. Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112:1289–95. [CrossRef] [PubMed] [Google Scholar]
  33. Pahakis MY, Kosky JR, Dull RO, et al. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun. 2007;355:228–33. [CrossRef] [PubMed] [Google Scholar]
  34. Tarbell JM, Cancel LM The glycocalyx and its significance in human medicine. J Intern Med 2016;280:97–113. [CrossRef] [PubMed] [Google Scholar]
  35. Weinbaum S, Zhang X, Han Y, et al. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA. 2003;100:7988–95. [CrossRef] [PubMed] [Google Scholar]
  36. Keller MW, Geddes L, Spotnitz W, et al. Microcirculatory dysfunction following perfusion with hyperkalemic, hypothermic, cardioplegic solutions and blood reperfusion. Circulation. 1991;84: 2485–94. [CrossRef] [PubMed] [Google Scholar]
  37. Potter DR, Jiang J, Damiano ER The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res. 2009;104:1318–25. [CrossRef] [PubMed] [Google Scholar]
  38. Boer C, Koning NJ, Van Teeffelen J, et al. Changes in microcirculatory perfusion during cardiac surgery are paralleled by alterations in glycocalyx integrity. Crit Care. 2013;17(Suppl 2):P212. [CrossRef] [Google Scholar]
  39. Shires T, Williams J, et al. Acute change in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10. [CrossRef] [PubMed] [Google Scholar]
  40. McIlroy DR, Kharasch ED Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg. 2003;96:1572–7. [CrossRef] [PubMed] [Google Scholar]
  41. Strunden M, Heckle K, Goetz AE, et al. Perioperative fluid and volume management: Physiological basis, tools and strategies. Ann Intensive Care. 2011;1:2–8. [CrossRef] [PubMed] [Google Scholar]
  42. Huxley VH, Scallan J Lymphatic fluid: Exchange mechanisms and regulation. J Physiol. 2011;589:2935–43. [CrossRef] [PubMed] [Google Scholar]
  43. Habib RH, Zacharias A, Schwann T, et al. Adverse effects of low hematocrit during cardiopulmonary bypass in adults: Should current practice be changed? J Thorac Cardiovasc Surg. 2003;125:1438–50. [CrossRef] [PubMed] [Google Scholar]
  44. Karkouti K, Djaiani G, Borger MA, et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann Thorac Surg. 2005;80:1381–7. [CrossRef] [PubMed] [Google Scholar]
  45. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40. [CrossRef] [PubMed] [Google Scholar]
  46. Selnes OA, McKhann GM, Borowicz LM, et al. Cognitive and neurobehavioral dysfunction after cardiac bypass procedures. Neurol Clin. 2006;24:133–45. [CrossRef] [PubMed] [Google Scholar]
  47. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402. [CrossRef] [PubMed] [Google Scholar]
  48. Stump DA Embolic factors associated with cardiac surgery. Semin Cardiothorac Vasc Anesth. 2005;9:151–2. [CrossRef] [PubMed] [Google Scholar]
  49. Barak M, Nakhoul F, Katz Y, et al. Pathophysiology and clinical implications of microbubbles during hemodialysis. Semin Dial. 2008;21:232–8. [CrossRef] [PubMed] [Google Scholar]
  50. Eckmann D, Armstead S Influence of endothelial glycocalyx degradation and surfactants on air embolism adhesion. Anesthesiology. 2006;105:1220–7. [CrossRef] [PubMed] [Google Scholar]
  51. Ohkuda K, Nakahara K, Binder A, et al. Venous air embolism in sheep: Reversible increase in lung microvascular permeability. J Appl Phys. 1981;51:887–94. [Google Scholar]
  52. Thorsen T, Klausen H, Lie RT, et al. Bubble induced aggregation of platelets: Effects of gas species, proteins and decompression. Undersea Hyperb Med. 1993;20:101–19. [PubMed] [Google Scholar]
  53. Malik AB, Johnson A, Tahamont MV Mechanisms of lung vascular injury after intravascular coagulation. Ann N Y Acad Sci. 1982;384:213–34. [CrossRef] [PubMed] [Google Scholar]
  54. Lee WH, Hairston P Structure effects on blood proteins at the gas-blood interface. Fed Proc. 1971;30:1615–20. [PubMed] [Google Scholar]
  55. Ward CA, Koheil A, McCullough D, et al. Activation of complement at plasma-air or serum-air interface of rabbits. J Appl Physiol. 1986;60:1651–8. [CrossRef] [PubMed] [Google Scholar]
  56. Ritz-Timme S, Eckelt N, Schmidtke E, et al. Genesis and diagnostic value of leukocyte and platelet accumulations around “air bubbles” in blood after venous air embolism. Int J Legal Med. 1998;111:22–6. [Google Scholar]
  57. Sobolewski P, Kandel J, Eckmann DM Air bubble contact with endothelial cells causes a calcium independent loss of mitochondrial membrane potential. PLoS One. 2012;7:1–8:e4725. [Google Scholar]
  58. Kobayashi S, Crooks S, Eckmann DM In vitro surfactant mitigation of gas bubble contact-induced endothelial cell death. Undersea Hyperb Med. 2011;38:27–39. [PubMed] [Google Scholar]
  59. Stump DA Deformable emboli and inflammation: Temporary or permanent damage. J Extra Corpor Technol. 2007;39:289–90. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  60. Young RW Hyperoxia: A review of the risks and benefits in adult cardiac surgery. J Extra Corpor Technol. 2012;44:241–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  61. Kagawa H, MoritaK, UnoY, et al. Inflammatory response to hyperoxemic and normoxemic cardiopulmonary bypass in acyanotic pediatric patients. World J Pediatr Congenit Heart Surg. 2014;5: 541–5. [CrossRef] [PubMed] [Google Scholar]
  62. Ihnken K, Morita K, Buckberg GD, et al. Reduced oxygen tension during cardiopulmonary bypass limits myocardial damage in acute hypoxic immature piglet hearts. Eur J Cardiothorac Surg. 1996;10:1127–35. [CrossRef] [PubMed] [Google Scholar]
  63. Fujii Y, Shirai M, Tsuchimochi H, et al. Hyperoxic condition promotes an inflammatory response during cardiopulmonary bypass in a rat model. Artif Organs. 2013;37:1034–40. [CrossRef] [PubMed] [Google Scholar]
  64. Bulutcu FS, Bayindir O, Polat B, et al. Does normoxemic cardiopulmonary bypass prevent myocardial reoxygenation injury in cyanotic children?. J Cardiothorac Vasc Anesth. 2002;16:330–3. [CrossRef] [PubMed] [Google Scholar]
  65. Joachimsson PO, Sjoberg F, Forsman M, et al. Adverse effects of hyperoxemia during cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;112:812–19. [CrossRef] [PubMed] [Google Scholar]
  66. Singh A, Ramnath RD, Foster RR, et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One. 2013;8:e55852. [CrossRef] [PubMed] [Google Scholar]
  67. Rops AL, van der Vlag J, Lensen JF, et al. Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int. 2004;65:768–85. [CrossRef] [PubMed] [Google Scholar]
  68. Moseley R, Waddington R, Evans P, et al. The chemical modification of glycosaminoglycan structure by oxygen-derived species in vitro. Biochim Biophys Acta. 1995;1244:245–52. [CrossRef] [PubMed] [Google Scholar]
  69. Granger DN Ischemia-reperfusion: Mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation. 1999;6:167–78. [CrossRef] [PubMed] [Google Scholar]
  70. Lindner JR, Ismail S, Spotnitz WD, et al. Albumin microbubble persistence during myocardial contrast echocardiography is associated with microvascular endothelial glycocalyx damage. Circulation 1998;98:2187–94. [CrossRef] [PubMed] [Google Scholar]
  71. Anttonen A, Leppa S, Ruotsalainen T, et al. Pretreatment serum syndecan-1 levels and outcome in small cell lung cancer patients treated with platinum based chemotherapy. Lung Cancer. 2003;41:171–7. [CrossRef] [PubMed] [Google Scholar]
  72. Peters L, Mocroft A, Soriano V, et al. Hyaluronic acid levels predict risk of hepatic encephalopathy and liver-related death in HIV/viral hepatitis co-infected patients. PLoS One. 2013;8:e64283. [CrossRef] [PubMed] [Google Scholar]
  73. Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18:538. [CrossRef] [PubMed] [Google Scholar]
  74. Johansson PI, Stensballe J, Rasmussen LS, et al. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254:194–200. [CrossRef] [PubMed] [Google Scholar]
  75. Rahbar E, Cardenas J, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med. 2015;13:117. [CrossRef] [PubMed] [Google Scholar]
  76. Filho T, Torres LN, Salgado C, et al. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am J Physiol Heart Circ Physiol. 2016;310:H1468–78. [CrossRef] [PubMed] [Google Scholar]
  77. Jacob M, Paul O, Mehringer L, et al. Albumin augmentation improves condition of guinea pig hearts after 4 hr of cold ischemia. Transplantation. 2009;87:956–65. [CrossRef] [PubMed] [Google Scholar]
  78. Becker B, Chappell D, Bruegger D, et al. Therapeutic strategies targeting the endothelial glycocalyx: Acute deficits but great potential. Cardiovasc Res. 2010;87:300–10. [CrossRef] [PubMed] [Google Scholar]
  79. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit (SAFE Study). N Engl J Med. 2004;350:2247. [CrossRef] [PubMed] [Google Scholar]
  80. Perel P, Roberts I Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2009;3:CD000567. [Google Scholar]
  81. Roberts I, Blackhall K, Alderson P, et al. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2011;11:CD001208. [Google Scholar]
  82. Myburgh JA, Finer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care (CHEST Study). N Engl J Med. 2012;367:1901–11. [CrossRef] [PubMed] [Google Scholar]
  83. Hartog C, Reinhart K Hydroxyethyl starch solutions are unsafe in critically ill patients. Int Care Med. 2009;35:1337–42. [CrossRef] [PubMed] [Google Scholar]
  84. Perner A, Haase N, Guttormsen A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis (6S Trial). N Engl J Med. 2012;367:124–34. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.