Free Access
Review
Issue
J Extra Corpor Technol
Volume 49, Number 3, September 2017
Page(s) 182 - 191
DOI https://doi.org/10.1051/ject/201749182
Published online 15 September 2017
  1. Prasongsukarn K, Borger MA Reducing cerebral emboli during cardiopulmonary bypass. Semin Cardiothorac Vasc Anesth. 2005;9:153–8. [CrossRef] [PubMed] [Google Scholar]
  2. Ferguson TBJr, Hammill BG, Peterson ED, DeLong ER, Grover FL, Committee STSND A decade of change–risk profiles and outcomes for isolated coronary artery bypass grafting procedures, 1990–1999: A report from the STS National Database Committee and the Duke Clinical Research Institute. Society of Thoracic Surgeons. Ann Thorac Surg. 2002;73:9–90. [CrossRef] [Google Scholar]
  3. Fink HA, Hemmy LS, MacDonald R, et al. Intermediate- and long-term cognitive outcomes after cardiovascular procedures in older adults: A systematic review. Ann Intern Med. 2015;163:107–17. [CrossRef] [PubMed] [Google Scholar]
  4. Clark RE, Brillman J, Davis DA, Lovell MR, Price TR, Magovern GJ Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J Thorac Cardiovasc Surg. 1995;109:249–57. [CrossRef] [PubMed] [Google Scholar]
  5. Arrowsmith JE, Grocott HP, Reves JG, Newman MF Central nervous system complications of cardiac surgery. Br J Anaesth. 2000;84:378–93. [CrossRef] [PubMed] [Google Scholar]
  6. Baranowska K, Juszczyk G, Dmitruk I, et al. Risk factors of neurological complications in cardiac surgery. Kardiol Pol. 2012;70:811–8. [PubMed] [Google Scholar]
  7. Knapik P, Ciesla D, Wawrzynczyk M, Knapik M, Borkowski J, Zembala M Incidence and prediction of permanent neurological deficits after cardiac surgery - are the existing models of prediction truly global? Eur J Cardiothorac Surg. 2010;37:717–23. [CrossRef] [PubMed] [Google Scholar]
  8. Bucerius J, Gummert JF, Borger MA, et al. Stroke after cardiac surgery: A risk factor analysis of 16,184 consecutive adult patients. Ann Thorac Surg. 2003;75:472–8. [CrossRef] [PubMed] [Google Scholar]
  9. Hogue CWJr, Murphy SF, Schechtman KB, Davila-Roman VG Risk factors for early or delayed stroke after cardiac surgery. Circulation. 1999;100:642–7. [CrossRef] [PubMed] [Google Scholar]
  10. Likosky DS, Leavitt BJ, Marrin CA, et al. Intra- and postoperative predictors of stroke after coronary artery bypass grafting. Ann Thorac Surg. 2003;76:428–34. [CrossRef] [PubMed] [Google Scholar]
  11. Fischer GW, Silvay G Cerebral oximetry in cardiac and major vascular surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2:249–56. [PubMed] [Google Scholar]
  12. Cropsey C, Kennedy J, Han J, Pandharipande P Cognitive dysfunction, delirium, and stroke in cardiac surgery patients. Semin Cardiothorac Vasc Anesth. 2015;19:309–17. [CrossRef] [PubMed] [Google Scholar]
  13. van Harten AE, Scheeren TW, Absalom AR A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia. 2012;67:280–93. [CrossRef] [PubMed] [Google Scholar]
  14. Bevan PJ Should cerebral near-infrared spectroscopy be standard of care in adult cardiac surgery? Heart Lung Circ. 2015;24:544–50. [CrossRef] [PubMed] [Google Scholar]
  15. Murkin JM Cerebral oximetry: Monitoring the brain as the index organ. Anesthesiology. 2011;114:12–3. [CrossRef] [PubMed] [Google Scholar]
  16. Orihashi K, Sueda T, Okada K, Imai K Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion. Eur J Cardiothorac Surg. 2004;26:907–11. [CrossRef] [PubMed] [Google Scholar]
  17. Zheng F, Sheinberg R, Yee MS, Ono M, Zheng Y, Hogue CW Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: A systematic review. Anesth Analg. 2013;116:663–76. [CrossRef] [PubMed] [Google Scholar]
  18. Ono M, Joshi B, Brady K, et al. Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesth. 2012;109:391–8. [CrossRef] [PubMed] [Google Scholar]
  19. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34. [CrossRef] [PubMed] [Google Scholar]
  20. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335:1857–63. [CrossRef] [PubMed] [Google Scholar]
  21. Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg. 2010;110:321–8. [CrossRef] [PubMed] [Google Scholar]
  22. Murphy GS, Hessel EA2nd, Groom RC Optimal perfusion during cardiopulmonary bypass: An evidence-based approach. Anesth Analg. 2009;108:1394–417. [CrossRef] [PubMed] [Google Scholar]
  23. Vretzakis G, Georgopoulou S, Stamoulis K, et al. Cerebral oximetry in cardiac anesthesia. J Thorac Dis. 2014;6(Suppl 1):S60–9. [PubMed] [Google Scholar]
  24. Scott JP, Hoffman GM Near-infrared spectroscopy: Exposing the dark (venous) side of the circulation. Paediatr Anaesth. 2014;24:74–88. [CrossRef] [PubMed] [Google Scholar]
  25. Valencia L, Rodriguez-Perez A, Ojeda N, Santana RY, Morales L, Padron O Baseline cerebral oximetry values depend on non-modifiable patient characteristics. Anaesth Crit Care Pain Med. 2015;34:345–8. [CrossRef] [Google Scholar]
  26. Nemoto EM, Bragin DE, Statom G, et al. Role of microvascular shunts in the loss of cerebral blood flow autoregulation. Adv Exp Med Biol. 2014;812:43–9. [CrossRef] [PubMed] [Google Scholar]
  27. Guarracino F Cerebral monitoring during cardiovascular surgery. Curr Opin Anaesthesiol. 2008;21:50–4. [CrossRef] [PubMed] [Google Scholar]
  28. Kane JM, Steinhorn DM Lack of irrefutable validation does not negate clinical utility of near-infrared spectroscopy monitoring: Learning to trust new technology. J Crit Care. 2009;24:472 e1–7. [PubMed] [Google Scholar]
  29. Moerman A, Vandenplas G, Bove T, Wouters PF, De Hert SG Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting. Br J Anaesth. 2013;110:258–65. [CrossRef] [PubMed] [Google Scholar]
  30. Yoshitani K, Kawaguchi M, Tatsumi K, Kitaguchi K, Furuya H A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers. Anesth Analg. 2002;94:586–90. [CrossRef] [PubMed] [Google Scholar]
  31. Ghosh A, Elwell C, Smith M Review article: Cerebral near-infrared spectroscopy in adults: A work in progress. Anesth Analg. 2012;115:1373–83. [CrossRef] [PubMed] [Google Scholar]
  32. Murkin JM, Arango M Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009;103(Suppl 1):i3–13. [CrossRef] [PubMed] [Google Scholar]
  33. Murkin JM Is it better to shine a light, or rather to curse the darkness? Cerebral near-infrared spectroscopy and cardiac surgery. Eur J Cardiothorac Surg. 2013;43:1081–3. [CrossRef] [PubMed] [Google Scholar]
  34. Macmillan CS, Andrews PJ Cerebrovenous oxygen saturation monitoring: Practical considerations and clinical relevance. Intensive Care Med. 2000;26:1028–36. [CrossRef] [PubMed] [Google Scholar]
  35. Daubeney PE, Pilkington SN, Janke E, Charlton GA, Smith DC, Webber SA Cerebral oxygenation measured by near-infrared spectroscopy: Comparison with jugular bulb oximetry. Ann Thorac Surg. 1996;61:930–4. [CrossRef] [PubMed] [Google Scholar]
  36. Lewis SB, Myburgh JA, Thornton EL, Reilly PL Cerebral oxygenation monitoring by near-infrared spectroscopy is not clinically useful in patients with severe closed-head injury: A comparison with jugular venous bulb oximetry. Crit Care Med. 1996;24:1334–8. [CrossRef] [PubMed] [Google Scholar]
  37. Ter Minassian A, Poirier N, Pierrot M, et al. Correlation between cerebral oxygen saturation measured by near-infrared spectroscopy and jugular oxygen saturation in patients with severe closed head injury. Anesthesiology. 1999;91:985–90. [CrossRef] [PubMed] [Google Scholar]
  38. Ševerdija EEVN, Teerenstra S, Ganushchak YM, Weerwind PW Impact of intraoperative events on cerebral tissue oximetry in patients undergoing cardiopulmonary bypass. J Extra Corpor Technol. 2015;47:32–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Faulkner JT, Hartley M, Tang A Using cerebral oximetry to prevent adverse outcomes during cardiac surgery. Perfusion. 2011;26:79–81. [CrossRef] [PubMed] [Google Scholar]
  40. Rubio A, Hakami L, Munch F, Tandler R, Harig F, Weyand M Noninvasive control of adequate cerebral oxygenation during low-flow antegrade selective cerebral perfusion on adults and infants in the aortic arch surgery. J Card Surg. 2008;23:474–9. [CrossRef] [PubMed] [Google Scholar]
  41. Chan SK, Underwood MJ, Ho AM, et al. Cannula malposition during antegrade cerebral perfusion for aortic surgery: Role of cerebral oximetry. Can J Anaesth. 2014;61:736–40. [CrossRef] [PubMed] [Google Scholar]
  42. Spiess BD, Rotruck J, McCarthy H, et al. Human factors analysis of a near-miss event: Oxygen supply failure during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2015;29:204–9. [CrossRef] [PubMed] [Google Scholar]
  43. Wang SC, Lo PH, Shen JL, et al. Innominate artery dissection with presentation of sudden right frontal desaturation detected by cerebral oximetry in complicated thoracic aortic aneurysm repair surgery: A case report. J Clin Anesth. 2011;23:137–41. [CrossRef] [PubMed] [Google Scholar]
  44. Yao FS, Tseng CC, Ho CY, Levin SK, Illner P Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8. [CrossRef] [PubMed] [Google Scholar]
  45. Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Majeric-Kogler V Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: A randomized, prospective study. Eur J Cardiothorac Surg. 2015;47:447–54. [CrossRef] [PubMed] [Google Scholar]
  46. Harrer M, Waldenberger FR, Weiss G, et al. Aortic arch surgery using bilateral antegrade selective cerebral perfusion in combination with near-infrared spectroscopy. Eur J Cardiothorac Surg. 2010;38:561–7. [CrossRef] [PubMed] [Google Scholar]
  47. Yu Y, Lu Y, Meng L, Han R Monitoring cerebral ischemia using cerebral oximetry: Pros and cons. J Biomed Res. 2015;30:1–4. [Google Scholar]
  48. Douds MT, Straub EJ, Kent AC, Bistrick CH, Sistino JJ A systematic review of cerebral oxygenation-monitoring devices in cardiac surgery. Perfusion. 2014;29:545–52. [PubMed] [Google Scholar]
  49. Negargar S, Mahmoudpour A, Taheri R, Sanaie S The relationship between cerebral oxygen saturation changes and post operative neurologic complications in patients undergoing cardiac surgery. Pak J Med Sci. 2007;23:380–5. [Google Scholar]
  50. de Tournay-Jette E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25:95–104. [CrossRef] [PubMed] [Google Scholar]
  51. Fischer GW, Lin HM, Krol M, et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg. 2011;141:815–21. [CrossRef] [PubMed] [Google Scholar]
  52. Schoen J, Meyerrose J, Paarmann H, Heringlake M, Hueppe M, Berger KU Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: A prospective observational trial. Crit Care. 2011;15:R218. [CrossRef] [PubMed] [Google Scholar]
  53. Hong SW, Shim JK, Choi YS, Kim DH, Chang BC, Kwak YL Prediction of cognitive dysfunction and patients’ outcome following valvular heart surgery and the role of cerebral oximetry. Eur J Cardiothorac Surg. 2008;33:560–5. [CrossRef] [PubMed] [Google Scholar]
  54. Fudickar A, Peters S, Stapelfeldt C, et al. Postoperative cognitive deficit after cardiopulmonary bypass with preserved cerebral oxygenation: A prospective observational pilot study. BMC Anesthesiol. 2011;11:7. [CrossRef] [PubMed] [Google Scholar]
  55. Olsson C, Thelin S Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegrade cerebral perfusion: Diagnostic performance and relationship to postoperative stroke. J Thorac Cardiovasc Surg. 2006;131:371–9. [CrossRef] [PubMed] [Google Scholar]
  56. Urbanski PP, Lenos A, Kolowca M, et al. Near-infrared spectroscopy for neuromonitoring of unilateral cerebral perfusion. Eur J Cardiothorac Surg. 2013;43:1140–4. [CrossRef] [PubMed] [Google Scholar]
  57. Kakihana Y, Okayama N, Matsunaga A, et al. Cerebral monitoring using near-infrared time-resolved spectroscopy and postoperative cognitive dysfunction. Adv Exp Med Biol. 2012;737:19–24. [CrossRef] [PubMed] [Google Scholar]
  58. Hassan MA, Rozario C, Elsayed H, Morcos K, Millner R A novel application of cerebral oximetry in cardiac surgery. Ann Thorac Surg. 2010;90:1700–1. [PubMed] [Google Scholar]
  59. Greenberg SB, Murphy G, Alexander J, Fasanella R, Garcia A, Vender J Cerebral desaturation events in the intensive care unit following cardiac surgery. J Crit Care. 2013;28:270–6. [PubMed] [Google Scholar]
  60. Senanayake E, Komber M, Nassef A, Massey N, Cooper G Effective cerebral protection using near-infrared spectroscopy monitoring with antegrade cerebral perfusion during aortic surgery. J Card Surg. 2012;27:211–6. [CrossRef] [PubMed] [Google Scholar]
  61. Kamenskaya OV, Cherniavsky AM, Klinkova AS, et al. Efficiency of various cerebral protection techniques used during the surgical treatment of chronic pulmonary thromboembolism. J Extra Corpor Technol. 2015;47:95–102. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  62. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth Analg. 2007;104:51–8. [CrossRef] [PubMed] [Google Scholar]
  63. Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36–44. [CrossRef] [PubMed] [Google Scholar]
  64. Kok WF, van Harten AE, Koene BM, et al. A pilot study of cerebral tissue oxygenation and postoperative cognitive dysfunction among patients undergoing coronary artery bypass grafting randomised to surgery with or without cardiopulmonary bypass. Anaesthesia. 2014;69:613–22. [CrossRef] [PubMed] [Google Scholar]
  65. Mohandas BS, Jagadeesh AM, Vikram SB Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Card Anaesth. 2013;16:102–6. [CrossRef] [PubMed] [Google Scholar]
  66. Colak Z, Borojevic M, Ivancan V, Gabelica R, Biocina B, Majeric-Kogler V The relationship between prolonged cerebral oxygen desaturation and postoperative outcome in patients undergoing coronary artery bypass grafting. Coll Antropol. 2012;36:381–8. [PubMed] [Google Scholar]
  67. Murkin JM, Adams SJ, Pardy E, Quantz M, McKenzie FN, Guo L Monitoring brain oxygen saturation during coronary bypass surgery improves outcomes in diabetic patients: A post hoc analysis. Heart Surg Forum. 2011;14:E1–6. [Google Scholar]
  68. McKhann GM, Grega MA, Borowicz LMJr, Baumgartner WA, Selnes OA Stroke and encephalopathy after cardiac surgery: An update. Stroke. 2006;37:562–71. [CrossRef] [PubMed] [Google Scholar]
  69. Ševerdija EE, Vranken NP, Simons AP, et al. Hemodilution combined with hypercapnia impairs cerebral autoregulation during normothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2015;29:1194–9. [CrossRef] [PubMed] [Google Scholar]
  70. Ganushchak YM, Fransen EJ, Visser C, De Jong DS, Maessen JG Neurological complications after coronary artery bypass grafting related to the performance of cardiopulmonary bypass. Chest. 2004;125:2196–205. [CrossRef] [PubMed] [Google Scholar]
  71. McKhann GM, Goldsborough MA, Borowicz LMJr, et al. Predictors of stroke risk in coronary artery bypass patients. Ann Thorac Surg. 1997;63:516–21. [CrossRef] [PubMed] [Google Scholar]
  72. Borger MA, Ivanov J, Weisel RD, et al. Decreasing incidence of stroke during valvular surgery. Circulation. 1998;98(Suppl):II137–43. [PubMed] [Google Scholar]
  73. Wolman RL, Nussmeier NA, Aggarwal A, et al. Cerebral injury after cardiac surgery: Identification of a group at extraordinary risk. Multicenter Study of Perioperative Ischemia Research Group (McSPI) and the Ischemia Research Education Foundation (IREF) Investigators. Stroke. 1999;30:514–22. [CrossRef] [PubMed] [Google Scholar]
  74. Boeken U, Litmathe J, Feindt P, Gams E Neurological complications after cardiac surgery: Risk factors and correlation to the surgical procedure. Thorac Cardiovasc Surg. 2005;53:33–6. [CrossRef] [PubMed] [Google Scholar]
  75. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:2064–89. [CrossRef] [PubMed] [Google Scholar]
  76. Muehlschlegel S, Lobato EB Con: All cardiac surgical patients should not have intraoperative cerebral oxygenation monitoring. J Cardiothorac Vasc Anesth. 2006;20:613–5. [CrossRef] [PubMed] [Google Scholar]
  77. Bor-Seng-Shu E, Kita WS, Figueiredo EG, et al. Cerebral hemodynamics: Concepts of clinical importance. Arq Neuropsiquiatr. 2012;70:352–6. [CrossRef] [PubMed] [Google Scholar]
  78. Lin TW, Wang JN, Kan CD Cerebral hyperperfusion syndrome after surgical repair of congenital supravalvular aortic stenosis. Ann Thorac Surg. 2015;100:e51–4. [CrossRef] [PubMed] [Google Scholar]
  79. Lassen NA Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238. [CrossRef] [PubMed] [Google Scholar]
  80. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JLJr Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234:H371–83. [PubMed] [Google Scholar]
  81. Tameem A, Krovvidi H Cerebral physiology. Contin Educ Anaesth Crit Care Pain. 2013;13:113118. [CrossRef] [Google Scholar]
  82. Czosnyka M, Miller C; Participants in the International Multidisciplinary Consensus Conference on Multimodality M. Monitoring of cerebral autoregulation. Neurocrit Care. 2014;21(Suppl 2):S95–102. [CrossRef] [Google Scholar]
  83. Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6. [CrossRef] [PubMed] [Google Scholar]
  84. Joshi B, Ono M, Brown C, et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg. 2012;114:503–10. [CrossRef] [PubMed] [Google Scholar]
  85. Heilbrun MP, Jorgensen PB, Boysen G Relationships between perfusion pressure and regional cerebral blood flow in patients with intracranial mass lesions. Eur Neurol. 1972;8:111–7. [CrossRef] [PubMed] [Google Scholar]
  86. McQuillen PS, Nishimoto MS, Bottrell CL, et al. Regional and central venous oxygen saturation monitoring following pediatric cardiac surgery: Concordance and association with clinical variables. Pediatr Crit Care Med. 2007;8:154–60. [CrossRef] [PubMed] [Google Scholar]
  87. Henriksen L Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure. J Cereb Blood Flow Metab. 1986;6:366–78. [CrossRef] [PubMed] [Google Scholar]
  88. Aaslid R Cerebral autoregulation and vasomotor reactivity. Front Neurol Neurosci. 2006;21:216–28. [CrossRef] [PubMed] [Google Scholar]
  89. Tiecks FP, Lam AM, Aaslid R, Newell DW Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26:1014–9. [CrossRef] [PubMed] [Google Scholar]
  90. Ševerdija EE, Gommer ED, Weerwind PW, Reulen JP, Mess WH, Maessen JG Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass. Med Biol Eng Comput. 2015;53:195–203. [CrossRef] [PubMed] [Google Scholar]
  91. Nogueira RC, Bor-Seng-Shu E, Santos MR, Negrao CE, Teixeira MJ, Panerai RB Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver. PLoS One. 2013;8:e70821. [CrossRef] [PubMed] [Google Scholar]
  92. Ono M, Brady K, Easley RB, et al. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg. 2014;147:483–9. [CrossRef] [PubMed] [Google Scholar]
  93. Kaku Y, Yoshimura S, Kokuzawa J Factors predictive of cerebral hyperperfusion after carotid angioplasty and stent placement. AJNR Am J Neuroradiol. 2004;25:1403–8. [PubMed] [Google Scholar]
  94. Hori D, Brown C, Ono M, et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth. 2014;113:1009–17. [CrossRef] [PubMed] [Google Scholar]
  95. Paulson OB, Strandgaard S, Edvinsson L Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92. [PubMed] [Google Scholar]
  96. Cook DJ, Proper JA, Orszulak TA, Daly RC, Oliver WCJr Effect of pump flow rate on cerebral blood flow during hypothermic cardiopulmonary bypass in adults. J Cardiothorac Vasc Anesth. 1997;11:415–9. [Google Scholar]
  97. Panerai RB, White RP, Markus HS, Evans DH Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure. Stroke. 1998;29:2341–6. [CrossRef] [PubMed] [Google Scholar]
  98. Pedersen LM, Nielsen J, Ostergaard M, Nygard E, Nielsen HB Increased intrathoracic pressure affects cerebral oxygenation following cardiac surgery. Clin Physiol Funct Imaging. 2012;32:367–71. [CrossRef] [PubMed] [Google Scholar]
  99. Siepe M, Pfeiffer T, Gieringer A, et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur J Cardiothorac Surg. 2011;40:200–7. [CrossRef] [PubMed] [Google Scholar]
  100. van Mook WN, Rennenberg RJ, Schurink GW, et al. Cerebral hyperperfusion syndrome. Lancet Neurol. 2005;4:877–88. [CrossRef] [PubMed] [Google Scholar]
  101. Browne SM, Halligan PW, Wade DT, Taggart DP Postoperative hypoxia is a contributory factor to cognitive impairment after cardiac surgery. J Thorac Cardiovasc Surg. 2003;126:1061–4. [CrossRef] [PubMed] [Google Scholar]
  102. Sanders RD, Degos V, Young WL Cerebral perfusion under pressure: Is the autoregulatory ‘plateau’ a level playing field for all? Anaesthesia. 2011;66:968–72. [CrossRef] [PubMed] [Google Scholar]
  103. Perry BG, Lucas SJ, Thomas KN, Cochrane DJ, Mundel T The effect of hypercapnia on static cerebral autoregulation. Physiol Rep. 2014;2:e12059. [PubMed] [Google Scholar]
  104. Meng L, Gelb AW Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205. [CrossRef] [PubMed] [Google Scholar]
  105. Artru AA, Katz RA, Colley PS Autoregulation of cerebral blood flow during normocapnia and hypocapnia in dogs. Anesthesiology. 1989;70:288–92. [CrossRef] [PubMed] [Google Scholar]
  106. McCulloch TJ, Boesel TW, Lam AM The effect of hypocapnia on the autoregulation of cerebral blood flow during administration of isoflurane. Anesth Analg. 2005;100:1463–7. [CrossRef] [PubMed] [Google Scholar]
  107. Paulson OB, Waldemar G, Schmidt JF, Strandgaard S Cerebral circulation under normal and pathologic conditions. Am J Cardiol. 1989;63:2C–5C. [Google Scholar]
  108. Mathew JP, Mackensen GB, Phillips-Bute B, et al. Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology. 2007;107:577–84. [CrossRef] [PubMed] [Google Scholar]
  109. DeFoe GR, Ross CS, Olmstead EM, et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Northern New England Cardiovascular Disease Study Group. Ann Thorac Surg. 2001;71:769–76. [CrossRef] [PubMed] [Google Scholar]
  110. Karkouti K, Djaiani G, Borger MA, et al. Low hematocrit during cardiopulmonary bypass is associated with increased risk of perioperative stroke in cardiac surgery. Ann Thorac Surg. 2005;80:1381–7. [CrossRef] [PubMed] [Google Scholar]
  111. Ogawa Y, Iwasaki K, Aoki K, Shibata S, Kato J, Ogawa S Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation. Anesth Analg. 2007;105:1389–96. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.