Free Access
Review
Issue
J Extra Corpor Technol
Volume 49, Number 3, September 2017
Page(s) 192 - 197
DOI https://doi.org/10.1051/ject/201749192
Published online 15 September 2017
  1. Mulloy B, Forster MJ Conformation and dynamics of heparin and heparan sulfate. Glycobiology. 2000;10:1147–56. [CrossRef] [PubMed] [Google Scholar]
  2. Rabenstein DL Heparin and heparan sulfate: Structure and function. Nat Prod Rep. 2002;19:312–31. [CrossRef] [PubMed] [Google Scholar]
  3. Opal SN, Kessler CM, Roemisch J, Knaub S Antithrombin, heparin and heparan sulfate. Crit Care Med. 2002;30:S325–31. [CrossRef] [PubMed] [Google Scholar]
  4. Templeton DM Proteoglycans in cell regulation. Crit Rev Clin Lab Sci. 1992;29:141–84. [CrossRef] [PubMed] [Google Scholar]
  5. Fareed J, Hoppenstedt D, Schultz C, et al. Biochemical and pharmacologic heterogeneity in low molecular weight heparins. Impact on the therapeutic profile. Curr Pharm Des. 2004;10:983–99. [CrossRef] [PubMed] [Google Scholar]
  6. Yini S, Heng Z, Xin A, Xiaochun M Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand. 2015;59:160–9. [CrossRef] [PubMed] [Google Scholar]
  7. Fareed J, Hoppensteadt DA, Bick RL An update of heparins at the beginning of the new millennium. Semin Thromb Hemost. 2000;26(Suppl 1):5–21. [Google Scholar]
  8. Bernfield M, Götte M, Park PW, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77. [CrossRef] [PubMed] [Google Scholar]
  9. Joglekar M, Khandelwal S, Clines DB, et al. Heparin enhances uptake of platelet factor4/heparin complexes by monocytes and macrophages. J Thromb Haemost. 2015;18:1416–27. [CrossRef] [PubMed] [Google Scholar]
  10. Manello F, Ligi D, Raffeto JD Glycosaminoglycan sulodexide modulates inflammatory pathways in chronic venous disease. Int Angiol. 2014;33:236–42. [PubMed] [Google Scholar]
  11. Schneider DJ, Tracy PB, Mann KG, Sobel BE Differential effects of anticoagulants on the activation of platelets ex vivo. Circulation. 1997;96:2877–83. [CrossRef] [PubMed] [Google Scholar]
  12. Becker RC, Bovil EG, Corrao JM, et al. Platelet activation determined by flow cytometry persists despite antithrombotic therapy in patients with unstable angina and non-q wave myocardial infarction. J Thromb Thrombolysis. 1994;1:95–100. [CrossRef] [PubMed] [Google Scholar]
  13. Prince R, Schreiter ER, Zou P, et al. The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release. J Cell Sci. 2010;123:2308–18. [CrossRef] [PubMed] [Google Scholar]
  14. Warkentin TE Hitlights: A career perspective on heparin-induced thrombocytopenia. Am J Hematol. 2012;87:S92–9. [CrossRef] [PubMed] [Google Scholar]
  15. Stringer SE, Gallagher JT Specific binding of the chemokine platelet factor 4 to heparan sulfate. J Biol Chem. 1997;272:20508–14. [CrossRef] [PubMed] [Google Scholar]
  16. Thompson LD, Pantoliano MW, Springer BA Energetic characterization of the basic fibroblast growth factor-heparin interaction: Identification of the heparin binding domain. Biochemistry. 1984;33:3831–40. [Google Scholar]
  17. Peterson F, Bock L, Flad HD, Brandt E Platelet factor-4 neutrophil-endothelial cell interaction: Involvement of mechanisms and functional consequences different from those elicited by IL-8. Blood. 1999;94:4020–8. [CrossRef] [PubMed] [Google Scholar]
  18. Jisang Y, Shaw AD Albumin supplementation as a therapeutic strategy in cardiac surgery: Useful tool or expensive hobby? Anesthesiology. 2016;124:983–5. [CrossRef] [PubMed] [Google Scholar]
  19. Hircovini M, Guerrini M, Torri G, Casu B Motional properties of E. coli polysaccharide K5 in aqueous solution analyzed by NMR relaxation measurements. Carbohydr Res. 1997;300:69–76. [CrossRef] [PubMed] [Google Scholar]
  20. HE GW. Effect and mechanism of cardioplegic arrest on the coronary endothelium-smooth muscle interaction. Clin Exp Pharmacol Physiol. 1999;25:831–5. [Google Scholar]
  21. Förstermann U, Xia N, Li H Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35. [CrossRef] [PubMed] [Google Scholar]
  22. Lee DH, Dane MJ, van den Berg M, et al. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microcirculation perfusion. PLoS One. 2014;9:e96477. [CrossRef] [PubMed] [Google Scholar]
  23. Mitchell L, Superina R, Delfore M, et al. Circulating dermatan sulfate and heparan sulfate/heparin proteoglycans in children undergoing liver transplantation. Thromb Haemost. 1995;74:859–63. [CrossRef] [PubMed] [Google Scholar]
  24. Ranucci M, Baryshnikova E, Isgro G, et al. Heparin-like effect in postcardiotomy extracorporeal membrane oxygenation patients. Crit Care. 2014;18:504. [CrossRef] [PubMed] [Google Scholar]
  25. Ostrowski SR, Johansson PI Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73:60–6. [CrossRef] [PubMed] [Google Scholar]
  26. Van Teeffelen JW, Brands J, Jensen C, Spaan JA, Vink H Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice. Hypertension. 2007;50:261–7. [CrossRef] [PubMed] [Google Scholar]
  27. Jacob M, Rehm M, Loetsch M, et al. The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res. 2007;44:435–43. [CrossRef] [PubMed] [Google Scholar]
  28. Bruegger D, Rehm M, Jacob M, et al. Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care. 2008;12:R73. [CrossRef] [PubMed] [Google Scholar]
  29. Korte S, Wiesinger A, Straeter AS, et al. Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch. 2012;463:269–78. [CrossRef] [PubMed] [Google Scholar]
  30. Rubio-Gayosso I, Platts SH, Duling BR Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2006;290:H2247–56. [CrossRef] [PubMed] [Google Scholar]
  31. Klinger AL, Pichette B, Sobolewski P, Eckmann DM Mechanotransduction basis of endothelial response to intravascular bubbles. Integr Biol. 2011;3:1033–42. [CrossRef] [PubMed] [Google Scholar]
  32. Kobayashi S, Crooks SD, Eckmann DM In vitor surfactant mitigation of gas bubble contact-induced endothelial cell death. Undersea Hyberb Med. 2011;38:27–39. [Google Scholar]
  33. Eckmann DM, Armstead SC Influence of endothelial glycocalyx degradation and surfactants on air embolism adhesion. Anesthesiology. 2006;105:1220–7. [CrossRef] [PubMed] [Google Scholar]
  34. Sverrisson K, Axelsson J, Rippe A, Asgeirsson D, Rippe B Dynamic size-selective effects of protamine sulfate and hyaluronidase on the rat glomerular filtration barrier in vivo. Am J Physiol Renal Physiol. 2014;307:1136–43. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.