Open Access
J Extra Corpor Technol
Volume 49, Number 4, December 2017
Page(s) 257 - 261
Published online 15 December 2017
  1. Kolobow T, Gattinoni L, Tomlinson T, et al. Control breathing using an extracorporeal membrane lung. Anaesthesia. 1977;46:138–41. [CrossRef] [PubMed] [Google Scholar]
  2. Cove ME, Maclaren G, Federspiel WJ, et al. Bench to bedside review: Extracorporeal carbon dioxide removal, past present and future. Crit Care. 2012;16:232. [CrossRef] [PubMed] [Google Scholar]
  3. Bein T, Weber-Carstens S, Goldmann A, et al. Lower tidal volume strategy (≈3 mL/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 mL/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensive Care Med. 2013;39:847–56. [CrossRef] [PubMed] [Google Scholar]
  4. Cardenas VJJr, Lynch JE, Ates R, et al. Venovenous carbon removal in chronic obstructive pulmonary disease: Experience in one patient. ASAIO J. 2009;55:420–2. [CrossRef] [PubMed] [Google Scholar]
  5. Mani RK, Schmidt W, Lund LW, et al. Respiratory dialysis for avoidance of intubation in acute exacerbation of COPD. ASAIO J. 2013;59:675–8. [CrossRef] [PubMed] [Google Scholar]
  6. Baker A, Richardson D, Craig G Extracorporeal carbon dioxide removal (ECCO2R) in respiratory failure: An overview, and where next? JICS. 2012;13:232–7. [Google Scholar]
  7. Terragni P, Maiolo G, Ranieri VM Role and potentials of low-flow CO2 removal system in mechanical ventilation. Curr Opin Crit Care. 2012;18:93–8. [CrossRef] [PubMed] [Google Scholar]
  8. Akkanti B, Rajagopal K, Patel KP, et al. Low-flow extracorporeal carbon dioxide removal using the Hemolung Respiratory Dialysis System to facilitate lung-protective mechanical ventilation in acute respiratory distress syndrome. J Extra Corpor Technol. 2017;49:112–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Kolobow T, Gattinoni L, Tomlinson T, et al. The carbon dioxide membrane lung (CDML): A new concept. Trans Am Soc Artif Intern Organs. 1977;23:17–21. [CrossRef] [Google Scholar]
  10. Hout MS, Hattler BG, Federspiel WJ Validation of a model for flow-dependent carbon dioxide exchange in artificial lungs. Artif Organs. 2000;24:114–8. [CrossRef] [PubMed] [Google Scholar]
  11. Cardenas VJJr, Miller L, Lynch JE, et al. Percutaneous venovenous CO2 removal with regional anticoagulation in an ovine model. ASAIO J. 2006;52:467–70. [CrossRef] [PubMed] [Google Scholar]
  12. Karagiannidis C, Kampe KA, Sipmann FS, et al. Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: Pathophysiological and technical considerations. Crit Care. 2014;18:R124. [CrossRef] [PubMed] [Google Scholar]
  13. Sidebotham D, Allen SJ, McGeorge A, et al. Venovenous extracorporeal membrane oxygenation in adults: Practical aspects of circuits, cannulae, and procedures. J Cardiothorac Vasc Anesth. 2012;26:893–909. [CrossRef] [PubMed] [Google Scholar]
  14. Galletti PM, Richardson PD, Snider MT, et al. A standardized method for defining the overall gas transfer performance of artificial lungs. Trans Am Soc Artif Intern Organs. 1972;1:359–68. [CrossRef] [Google Scholar]
  15. Karius DR 2008. Respiratory adaptations in health and disease: Ventilation-perfusion (V/Q) ratio. Kansas City University of Medicine and Biosciences. Available at: Accessed May 7, 2016. [Google Scholar]
  16. Park M, Costa EL, Maciel AT, et al. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome. PLoS One. 2013;8:e54954. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.