Free Access
Issue
J Extra Corpor Technol
Volume 50, Number 1, March 2018
Page(s) 19 - 29
DOI https://doi.org/10.1051/ject/201850019
Published online 15 March 2018
  1. Bartel DP MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. [CrossRef] [PubMed] [Google Scholar]
  2. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. [CrossRef] [PubMed] [Google Scholar]
  3. Long G, Wang F, Duan Q, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8:811–8. [CrossRef] [PubMed] [Google Scholar]
  4. D’ Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31:2765–73. [CrossRef] [PubMed] [Google Scholar]
  5. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating MicroRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84. [CrossRef] [PubMed] [Google Scholar]
  6. Chan YC, Banerjee J, Choi SY, et al. miR-210: The master hypoxamir. Microcirculation. 2012;19:215–23. [CrossRef] [PubMed] [Google Scholar]
  7. Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8:2756–68. [CrossRef] [PubMed] [Google Scholar]
  8. Mutharasan RK, Nagpal V, Ichikawa Y, et al. microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt-t and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol. 2011;301:H1519–30. [CrossRef] [PubMed] [Google Scholar]
  9. Rosjo H, Dahl MB, Bye A, et al. Prognostic value of circulating microRNA-210 levels in patients with moderate to severe aortic stenosis. PLoS One. 2014;9:e91812. [CrossRef] [PubMed] [Google Scholar]
  10. Hu S, Huang M, Li Z, et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation. 2010;122(Suppl):S124–31. [PubMed] [Google Scholar]
  11. Lorenzen J, Kielstein JT, Hafer C, et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2011;6:1540–6. [CrossRef] [PubMed] [Google Scholar]
  12. Kirschner MB, Edelman JB, Kao S, et al. The impact of hemolysis on cell-free microRNA biomarkers. Front Genet. 2013;4:1–13. [Google Scholar]
  13. Ricci Z, Pezzella C, Romagnoli S, et al. High levels of free haemoglobin in neonates and infants undergoing suugery on cardiopulmonary bypass. Interact Cardiovasc Thorac Surg. 2014;19:183–8. [CrossRef] [PubMed] [Google Scholar]
  14. Kowalewski M, Pawliszak W, Malvindi PG, et al. Off-pump coronary artery bypass grafting improves short-term outcomes in high-risk patients compared with on-pump coronary artery bypass grafting: Meta-analysis. J Thorac Cardiovasc Surg. 2016;151:60–77. [CrossRef] [PubMed] [Google Scholar]
  15. Puskas JD, Martin J, Cheng DC, et al. ISMICS consensus conference and statement of randmonised controlled trials of off-pump versus conventional coronary artery bypass surgery. Innovations (Phila). 2015;10:219–29. [CrossRef] [PubMed] [Google Scholar]
  16. Wang J, Chen J, Chang P Micro RNA’s in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2009;2:807–13. [CrossRef] [PubMed] [Google Scholar]
  17. Muller PY, Janovjak H, Miserez AR, et al. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques. 2002;32:1372–9. [PubMed] [Google Scholar]
  18. Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: A clue to fetal reprogramming in heart failure. Circulation. 2007;116:258–67. [CrossRef] [PubMed] [Google Scholar]
  19. Karu I, Tahepold P, Sulling TA, et al. Off-pump coronary surgery causes immediate release of myocardial damage markers. Asian Cardiovasc Thorac Ann. 2009;17:494–9. [CrossRef] [PubMed] [Google Scholar]
  20. Bappu NJ, Venugopal P, Bisoi AK, et al. Troponin-I release after cardiac surgery with different surgical techniques and post-operative neurological outcomes. McGill J Med. 2006;9:88. [Google Scholar]
  21. Paparella D, Cappabianca G, Malvindi P, et al. Myocardial injury after off-pump coronary artery bypass grafting operation. Eur J Cardiothorac Surg. 2007;32:481–7. [CrossRef] [PubMed] [Google Scholar]
  22. Emanueli C, Shearn AIU, Laftah A, et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: An example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One. 2016;11:e0154274. [CrossRef] [PubMed] [Google Scholar]
  23. Mamikonian LS, Mamo LB, Smith PB, et al. Cardiopulmonary bypass is associated with hemolysis and acute kidney injury in neonates, infants and children. Pediatr Crit Care Med. 2014;15:e111–9. [CrossRef] [PubMed] [Google Scholar]
  24. Vermeulen Windsant IC, de Wit NCJ, Sertorio JTC, et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and interstitial tissue damage. Front Physiol. 2014;5:1–9. [CrossRef] [PubMed] [Google Scholar]
  25. Han WK, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.