Free Access
Issue
J Extra Corpor Technol
Volume 52, Number 4, December 2020
Page(s) 289 - 294
DOI https://doi.org/10.1051/ject/202052289
Published online 15 December 2020
  1. Maekawa K, Baba T, Otomo S, et al. Low pre-existing gray matter volume in the medial temporal lobe and white matter lesions are associated with postoperative cognitive dysfunction after cardiac surgery. PLoS One. 2014;9:e87375. [CrossRef] [PubMed] [Google Scholar]
  2. Bruggemans EF Cognitive dysfunction after cardiac surgery: Pathophysiological mechanisms and preventive strategies. Neth Heart J. 2013;21:70–3. [CrossRef] [PubMed] [Google Scholar]
  3. Maekawa K, Goto T, Baba T, et al. Impaired cognition preceding cardiac surgery is related to cerebral ischemic lesions. J Anesth. 2011;25:330–6. [CrossRef] [PubMed] [Google Scholar]
  4. Selnes OA, Royal RM, Grega MA, et al. Cognitive changes 5 years after coronary artery bypass grafting: Is there evidence of late decline? Arch Neurol. 2001;58:598–604. [CrossRef] [PubMed] [Google Scholar]
  5. Seco M, Edelman JB, Van Boxtel B, et al. Neurologic injury and protection in adult cardiac and aortic surgery. J Cardiothorac Vasc Anesth. 2015;29:185–95. [CrossRef] [PubMed] [Google Scholar]
  6. Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analgesia. 2010;110:321–8. [CrossRef] [PubMed] [Google Scholar]
  7. Abu-Omar Y, Cifelli A, Matthews PM, et al. The role of microembolisation in cerebral injury as defined by functional magnetic resonance imaging. Eur J Cardio Thorac Surg. 2004;26:586–91. [CrossRef] [Google Scholar]
  8. Ahonen J, Salmenpera M Brain injury after adult cardiac surgery. Acta Anaestheioligica Scandinavica. 2004;48:4–19. [CrossRef] [Google Scholar]
  9. Prasongsukarn K, Borger MA Reducing cerebral emboli during cardiopulmonary bypass. Semin CardioThorac Vasc Anesth. 2005;2:153–8. [CrossRef] [PubMed] [Google Scholar]
  10. Zanatta P, Forti A, Minniti G, et al. Brain emboli distribution and differentiation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2013;27:865–75. [CrossRef] [PubMed] [Google Scholar]
  11. Peng L, Xu L, Ouyang W Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): A meta-analysis. PLoS One. 2013;8:e79624. [CrossRef] [PubMed] [Google Scholar]
  12. Reinsfelt B, Ricksten S, Zetterberg H, et al. Cerebrospinal fluid markers of brain injury, inflammation, and blood-brain barrier dysfunction in cardiac surgery. Ann Thorac Surg. 2012;94:549–55. [CrossRef] [PubMed] [Google Scholar]
  13. Spiess BD Critical oxygen delivery: The crux of bypass with a special look at the microcirculation. J Extra Corpor Technol. 2011;43:P10–6. [PubMed] [Google Scholar]
  14. Boron WF, Boulpaep EL Medical Physiology: A Cellular and Molecular Approach. Philadelphia, PA: Elsevier Saunders; 2005. [Google Scholar]
  15. Clarke DD, Sokoloff L Regulation of cerebral metabolic rate. In Siegal GJ, Agranoff BW, Albers RW, et al. , eds. Basic neurochemistry: molecular, cellular and medical aspects, 6th ed. Philadelphia, PA: Lipincott-Raven; 1999:637–70. [Google Scholar]
  16. Yao FG, Tseng CA, Ho CA, et al. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18:552–8. [CrossRef] [PubMed] [Google Scholar]
  17. Brown CH, Neufeld KJ, Tian J, et al. Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients. JAMA Surg. 2019;154:819–26. [CrossRef] [PubMed] [Google Scholar]
  18. Mukaida H, Matsushita S, Kuwaki K, et al. Time–dose response of oxygen delivery during cardiopulmonary bypass predicts acute kidney injury. J Thorac Cardiovasc Surg. 2019;158:492–9. [CrossRef] [PubMed] [Google Scholar]
  19. Ranucci M, Romitti F, Isgro G, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80:2213–20. [CrossRef] [PubMed] [Google Scholar]
  20. Siesjö BK Pathophysiology and treatment of focal cerebral ischemia: Part I: Pathophysiology. J Neurosurg. 1992;77:169–84. [CrossRef] [PubMed] [Google Scholar]
  21. Sakoh M, Gjedde A Neuroprotection in hypothermia linked to redistribution of oxygen in brain. Am J Physiol Heart Circ Physiol. 2003;285:H17–25. [CrossRef] [PubMed] [Google Scholar]
  22. Bacher A, Kwon JY, Zornow MH Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits. Anesthesiology. 1998;88:403–9. [CrossRef] [PubMed] [Google Scholar]
  23. Sungurtekin H, Cook DJ, Orszulak TA, et al. Cerebral responses to hemodilution during hypothermic cardiopulmonary bypass in adults. Anesth Anagesia. 1999;89:1078–83. [CrossRef] [PubMed] [Google Scholar]
  24. Ono M, Zheng Y, Joshi B, et al. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery. Anesth Analgesia. 2013;116:198–204. [CrossRef] [PubMed] [Google Scholar]
  25. Harrison JK, McArthur KS, Quinn TJ Assessment scales in stroke: Clinimetric and clinical considerations. Clin Interv Aging. 2013;8:201–11. [PubMed] [Google Scholar]
  26. Ajam K, Gold LS, Beck SS, et al. Reliability of the cerebral performance category to classify neurological status among survivors of ventricular fibrillation arrest: A cohort study. Scand J Trauma Resusc Emerg Med. 2011;19:38. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.