Free Access
Issue
J Extra Corpor Technol
Volume 54, Number 3, September 2022
Page(s) 212 - 222
DOI https://doi.org/10.1051/ject/202254212
Published online 15 September 2022
  1. Nasr VG, Raman L, Barbaro RP, et al. Highlights from the Extracorporeal Life Support Organization Registry: 2006-2017. ASAIO J. 2019;65:537–44. [Google Scholar]
  2. Lee H-J, Son Y-J. Factors associated with in-hospital mortality after continuous renal replacement therapy for critically ill patients: A systematic review and meta-analysis. Int J Environ Res Public Health. 2020;17:8781. [CrossRef] [Google Scholar]
  3. Prowle JR, Bellomo R. Continuous renal replacement therapy: Recent advances and future research. Nat Rev Nephrol. 2010;6:521–9. [CrossRef] [PubMed] [Google Scholar]
  4. Cortina G, McRae R, Hoq M, et al. Mortality of critically ill children requiring continuous renal replacement therapy: Effect of fluid overload, underlying disease, and timing of initiation. Pediatr Crit Care Med. 2019;20:314–22. [CrossRef] [PubMed] [Google Scholar]
  5. Ricci Z, Goldstein SL. Pediatric continuous renal replacement therapy. Contrib Nephrol. 2016;187:121–30. [CrossRef] [PubMed] [Google Scholar]
  6. Hayes LW, Oster RA, Tofil NM, et al. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24:394–400. [CrossRef] [Google Scholar]
  7. Griffin BR, Liu KD, Teixeira JP. Critical care nephrology: core curriculum 2020. Am J Kidney Dis. 2020;75:435–52. [CrossRef] [Google Scholar]
  8. Sherwin J, Heath T, Watt K. Pharmacokinetics and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: A review of the current literature. Clin Ther. 2016;38:1976–94. [CrossRef] [Google Scholar]
  9. Nolin TD, Aronoff GR, Fissell WH, et al. Pharmacokinetic assessment in patients receiving continuous RRT: Perspectives from the Kidney Health Initiative. Clin J Am Soc Nephrol. 2015;10:159–64. [CrossRef] [PubMed] [Google Scholar]
  10. Shekar K, Fraser JF, Smith MT, et al. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012;27:741.e9–18. [CrossRef] [Google Scholar]
  11. Churchwell MD, Mueller BA. Drug dosing during continuous renal replacement therapy. Semin Dial. 2009;22:185–8. [CrossRef] [Google Scholar]
  12. Barradell L, Bryson H. Cefepime: A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1994;47:471–505. [CrossRef] [PubMed] [Google Scholar]
  13. Payne LE, Gagnon DJ, Riker RR, et al. Cefepime-induced neurotoxicity: A systematic review. Crit Care. 2017;21:1–8. [CrossRef] [PubMed] [Google Scholar]
  14. Abdulla A, van den Broek P, Ewoldt TMJ, et al. Barriers and facilitators in the clinical implementation of beta-lactam therapeutic drug monitoring in critically ill patients: a critical review. Ther Drug Monit. 2022;44:112–20. [CrossRef] [PubMed] [Google Scholar]
  15. Abdul-Aziz MH, Alffenaar JWC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A position paper. Intensive Care Med. 2020;46:1127–53. [CrossRef] [PubMed] [Google Scholar]
  16. Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41:220–33. [CrossRef] [PubMed] [Google Scholar]
  17. Jang SM, Infante S, Abdi Pour A. Drug dosing considerations in critically ill patients receiving continuous renal replacement therapy. Pharmacy (Basel). 2020;8:18. [CrossRef] [Google Scholar]
  18. Choi G, Gomersall CD, Lipman J, et al. . The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration an in vitro study of levofloxacin. Int J Antimicrob Agents. 2004;24:468–72. [Google Scholar]
  19. Chaijamorn W, Shaw AR, Lewis SJ, et al. Ex vivo Ceftolozane/Tazobactam clearance during continuous renal replacement therapy. Blood Purif. 2017;44:16–23. [CrossRef] [PubMed] [Google Scholar]
  20. Baud FJ, Houzé P, Carli P, et al. Alteration of the pharmacokinetics of aminoglycosides by adsorption in a filter during continuous renal replacement therapy. An in vitro assessment. Therapie. 2021;76:415–24. [CrossRef] [Google Scholar]
  21. Lewis SJ, Switaj LA, Mueller BA. Tedizolid adsorption and transmembrane clearance during in vitro continuous renal replacement therapy. Blood Purif. 2015;40:66–71. [CrossRef] [PubMed] [Google Scholar]
  22. Biagi M, Butler DXT, Tan X, et al. Pharmacokinetics and dialytic clearance of isavuconazole during in vitro and in vivo continuous renal replacement. Antimicrob Agents Chemother. 2019;63:e01085–19. [Google Scholar]
  23. Baud FJ, Jullien V, Abarou T, et al. Elimination of fluconazole during continuous renal replacement therapy. An in vitro assessment. Int J Artif Organs. 2021;44:453–64. [CrossRef] [PubMed] [Google Scholar]
  24. Onichimowski D, Ziółkowski H, Nosek K, et al. Comparison of adsorption of selected antibiotics on the filters in continuous renal replacement therapy circuits: In vitro studies. J Artif Organs. 2020;23:163–70. [CrossRef] [PubMed] [Google Scholar]
  25. Onichimowski D, Nosek K, Ziółkowski H, et al. Adsorption of vancomycin, gentamycin, ciprofloxacin and tygecycline on the filters in continuous renal replacement therapy circuits: in full blood in vitro study. J Artif Organs. 2020;24:65–73. [Google Scholar]
  26. Sartori M, Loregian A, Pagni S, et al. Kinetics of linezolid in continuous renal replacement therapy: An in vitro study. Ther Drug Monit. 2016;38:579–86. [CrossRef] [PubMed] [Google Scholar]
  27. Baud FJ, Houzé P, Raphalen J-H, et al. Diafiltration flowrate is a determinant of the extent of adsorption of amikacin in renal replacement therapy using the ST150®-AN69 filter: An in vitro study. Int J Artif Organs. 2020;43:758–66. [CrossRef] [PubMed] [Google Scholar]
  28. Ferrannini M, Niscola P, Falcone C, et al. Drastic reduction of piperacillin-tazobactam concentrations in an in-vitro model of continuous venovenous hemofiltration: Proposal of an innovative modality of administration to maintain them at constant concentration. Cardiovasc Hematol Agents Med Chem. 2014;11:187–93. [CrossRef] [Google Scholar]
  29. Kumar A, Mann HJ, Keshtgarpour M, et al. In vitro characterization of oritavancin clearance from human blood by low-flux, high-flux, and continuous renal replacement therapy dialyzers. Int J Artif Organs. 2011;34:1067–74. [CrossRef] [PubMed] [Google Scholar]
  30. Baud FJ, Jullien V, Secrétan P-H, et al. Are we correctly treating invasive candidiasis under continuous renal replacement therapy with echinocandins? Preliminary in vitro assessment. Anaesth Crit Care Pain Med. 2021;40:100640. [CrossRef] [Google Scholar]
  31. Ahsman MJ, Hanekamp M, Wildschut ED, et al. . Population pharmacokinetics of midazolam and its metabolites during venoarterial extracorporeal membrane oxygenation in neonates. Clin Pharmacokinet. 2010;49:407–19. [CrossRef] [PubMed] [Google Scholar]
  32. Harthan AA, Buckley KW, Heger ML, et al. Medication Adsorption into Contemporary Extracorporeal Membrane Oxygenator Circuits. J Pediatr Pharmacol Ther. 2014;19:288–95. [Google Scholar]
  33. van der Vorst MMJ, Wildschut E, Houmes RJ, et al. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit Care. 2006;10:6–13. [Google Scholar]
  34. Ahsman MJ, Wildschut ED, Tibboel D, et al. Pharmacokinetics of cefotaxime and desacetylcefotaxime in infants during extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2010;54:1734–41. [CrossRef] [PubMed] [Google Scholar]
  35. Shekar K, Roberts JA, Mcdonald CI, et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care. 2012;16:R194. [CrossRef] [PubMed] [Google Scholar]
  36. Wildschut ED, Ahsman MJ, Allegaert K, et al. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16. [CrossRef] [PubMed] [Google Scholar]
  37. Watt KM, Cohen-Wolkowiez M, Williams DC, et al. . Antifungal extraction by the extracorporeal membrane oxygenation circuit. J Extra Corpor Technol. 2017;49:150–9. [Google Scholar]
  38. Shekar K, Roberts JA, Mcdonald CI, et al. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: Results from an ex vivo study. Crit Care. 2015;19:1–8. [CrossRef] [PubMed] [Google Scholar]
  39. Lemaitre F, Hasni N, Leprince P, et al. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit Care. 2015;19:40. [CrossRef] [PubMed] [Google Scholar]
  40. Tett SE. Clinical pharmacokinetics of slow-acting antirheumatic drugs. Clin Pharmacokinet. 1993;25:392–407. [CrossRef] [PubMed] [Google Scholar]
  41. Mulla H, Lawson G, von Anrep C, et al. In vitro evaluation of sedative drug losses during extracorporeal membrane oxygenation. Perfusion. 2000;15:21–6. [CrossRef] [PubMed] [Google Scholar]
  42. Mehta NM, Halwick DR, Dodson BL, et al. Potential drug sequestration during extracorporeal membrane oxygenation: Results from an ex vivo experiment. Intensive Care Med. 2007;33:1018–24. [CrossRef] [PubMed] [Google Scholar]
  43. Wildschut ED, de Hoog M, Ahsman MJ, et al. Plasma concentrations of oseltamivir and oseltamivir carboxylate in critically ill children on extracorporeal membrane oxygenation support. PLoS One. 2010;5:5–7. [Google Scholar]
  44. Wildschut ED, Ahsman MJ, Allegaert K, et al. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16. [CrossRef] [PubMed] [Google Scholar]
  45. Pea F, Viale P, Pavan F, et al. Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin Pharmacokinet. 2007;46:997–1038. [CrossRef] [PubMed] [Google Scholar]
  46. Wildschut ED, Ahsman MJ, Allegaert K, et al. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16. [CrossRef] [PubMed] [Google Scholar]
  47. Jamal JA, Mueller BA, Choi GYS, et al. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis. 2015;82:92–103. [CrossRef] [Google Scholar]
  48. Garrelts JC, Wagner DJ. The pharmacokinetics, safety, and tolerance of cefepime administered as an intravenous bolus or as a rapid infusion. Ann Pharmacother. 1999;33:1258–61. [CrossRef] [PubMed] [Google Scholar]
  49. Huls CE, Prince RA, Seilheimer DK, et al. Pharmacokinetics of cefepime in cystic fibrosis patients. Antimicrob Agents Chemother. 1993;37:1414–6. [CrossRef] [PubMed] [Google Scholar]
  50. Blumer JL, Reed MD, Knupp C. Review of the pharmacokinetics of cefepime in children. Pediatr Infect Dis J. 2001;20:337–42. [CrossRef] [PubMed] [Google Scholar]
  51. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research C for VM: Bioanalytical Method Validation: Guidance for Industry. [Google Scholar]
  52. Wilson FP, Bachhuber MA, Caroff D, et al. Low cefepime concentrations during high blood and dialysate flow continuous venovenous hemodialysis. Antimicrob Agents Chemother. 2012;56:2178–80. [CrossRef] [PubMed] [Google Scholar]
  53. Allaouchiche B, Breilh D, Jaumain H, et al. Pharmacokinetics of cefepime during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother. 1997; 41:2424–2427. [CrossRef] [PubMed] [Google Scholar]
  54. Isla A, Gascón AR, Maynar J, et al. Cefepime and continuous renal replacement therapy (CRRT): In vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clinical Therapeutics. 2005;27:599–608. [CrossRef] [Google Scholar]
  55. Troyanov S, Cardinal J, Geadah D, et al. Solute clearances during continuous venovenous haemofiltration at various ultrafiltration flow rates using Multiflow-100 and HF1000 filters. Nephrol Dial Transplant. 2003;18:961–6. [CrossRef] [PubMed] [Google Scholar]
  56. Allaouchiche B, Breilh D, Jaumain H, et al. Pharmacokinetics of cefepime during continuous venovenous hemodiafiltration. Antimicrob Agents Chemother. 1997;41:2424–7. [CrossRef] [PubMed] [Google Scholar]
  57. Malone RS, Fish DN, Abraham E, et al. Pharmacokinetics of cefepime during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother. 2001;45:3148–55. [CrossRef] [PubMed] [Google Scholar]
  58. Chaijamorn W, Charoensareerat T, Srisawat N, et al. Cefepime dosing regimens in critically ill patients receiving continuous renal replacement therapy: A Monte Carlo simulation study. J Intensive Care. 2018;6:1–11. [CrossRef] [Google Scholar]
  59. Philpott CD, Droege CA, Droege ME, et al. Pharmacokinetics and pharmacodynamics of extended-infusion cefepime in critically ill patients receiving continuous renal replacement therapy: A prospective, open-label study. Pharmacotherapy. 2019;39:1066–76. [CrossRef] [PubMed] [Google Scholar]
  60. Stitt G, Morris J, Schmees L, et al. Cefepime pharmacokinetics in critically ill pediatric patients receiving continuous renal replacement therapy. Antimicrob Agents Chemother. 2019;63:e02006–18. [CrossRef] [PubMed] [Google Scholar]
  61. Bugnon D, Giannoni E, Majcherczyk P, et al. Pitfalls in cefepime titration from human plasma: Plasma-and temperature-related drug degradation in vitro. Antimicrob Agents Chemother. 2002;46:3654–6. [CrossRef] [PubMed] [Google Scholar]
  62. Preston TJ, Ratliff TM, Gomez D, et al. Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol. 2010;42:199–202. [Google Scholar]
  63. Nasr VG, Meserve J, Pereira LM, et al. Sedative and analgesic drug sequestration after a single bolus injection in an ex vivo extracorporeal membrane oxygenation infant circuit. ASAIO J. 2019;65:187–91. [CrossRef] [PubMed] [Google Scholar]
  64. Imburgia CE, Rower JE, Green DJ, et al. Remdesivir and GS-441524 extraction by Ex Vivo extracorporeal life support circuits. ASAIO J. 2021; Epub ahead of print. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.