Free Access
Issue |
J Extra Corpor Technol
Volume 54, Number 3, September 2022
|
|
---|---|---|
Page(s) | 203 - 211 | |
DOI | https://doi.org/10.1051/ject/202254203 | |
Published online | 15 September 2022 |
- Amanakis G, Sun J, Fergusson MM, et al. Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Cardiovasc Res. 2021;117:212–23. [CrossRef] [PubMed] [Google Scholar]
- Beutner G, Alanzalon RE, Porter GA Jr. Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci Rep. 2017;7:14488. [CrossRef] [Google Scholar]
- Bland AR, Payne FM, Ashton JC, et al. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res. 2021;175:105986. [Google Scholar]
- Comità S, Femmino S, Thairi C, et al. Regulation of STAT3 and its role in cardioprotection by conditioning: Focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol. 2021;116:56. [CrossRef] [PubMed] [Google Scholar]
- Hom JR, Quintanilla RA, Hoffman DL, et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev Cell. 2011;21:469–78. [CrossRef] [Google Scholar]
- Baines CP. The mitochondrial permeability transition pore and the cardiac necrotic program. Pediatr Cardiol. 2011;32:258–62. [CrossRef] [PubMed] [Google Scholar]
- Porter GA Jr, Hom J, Hoffman D, et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol. 2011;31:75–81. [CrossRef] [Google Scholar]
- Baker CN, Ebert SN. Development of aerobic metabolism in utero: Requirement for mitochondrial function during embryonic and fetal periods. OA Biotechnology. 2013;2:16. [CrossRef] [Google Scholar]
- Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155:160–71. [CrossRef] [Google Scholar]
- Davies KM, Strauss M, Daum B, et al. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci USA. 2011;108:14121–6. [CrossRef] [PubMed] [Google Scholar]
- Lingan JV, Alanzalon RE, Porter GA Jr. Preventing permeability transition pore opening increases mitochondrial maturation, myocyte differentiation and cardiac function and cardiac function in the neonatal mouse heart. Pediatr Res. 2017;81:932–41. [CrossRef] [PubMed] [Google Scholar]
- Hausenloy DJ, Boston-Griffiths E, Yellon DM. Cardioprotection during cardiac surgery. Cardiovasc Res. 2012;94:253–65. [CrossRef] [PubMed] [Google Scholar]
- Pouard P, Bojan M. Neonatal cardiopulmonary bypass. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2013;16:59–61. [CrossRef] [Google Scholar]
- Matte GS, del Nido PJ. History and use of del Nido cardioplegia solution at Boston Children’s Hospital. J Extra Corpor Technol. 2012;44:98–103. [Google Scholar]
- Åmark K, Berggren H, Björk K, et al. Blood cardioplegia provides superior protection in infant cardiac surgery. Ann Thorac Surg. 2005;80:989–94. [CrossRef] [Google Scholar]
- O’Blenes SB, Friesen CH, Ali A, et al. Protecting the aged heart during cardiac surgery: The potential benefits of del Nido cardioplegia. J Thorac Cardiovasc Surg. 2011;141:762–9. [CrossRef] [Google Scholar]
- DiVincenti L Jr, Westcott R, Lee C. Sheep (Ovis aries) as a model for cardiovascular surgery and management before, during, and after cardiopulmonary bypass. J Am Assoc Lab Anim Sci. 2014;53:439–48. [Google Scholar]
- Beutner G, Eliseev RA, Porter GA Jr. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One. 2014;9:e113330. [CrossRef] [Google Scholar]
- Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88:581–609. [CrossRef] [PubMed] [Google Scholar]
- Solaini G, Harris DA. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J. 2005;390:377–94. [CrossRef] [PubMed] [Google Scholar]
- Johnson JA, Ogbi M. Targeting the F1Fo ATP synthase: Modulation of the body’s powerhouse and its implications for human disease. Curr Med Chem. 2011;18:4684–714. [CrossRef] [Google Scholar]
- Jennings RB, Reimer KA, Steenbergen C. Effects of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia. J Mol Cell Cardiol. 1991;23:1383–95. [CrossRef] [Google Scholar]
- Ferrantini C, Belus A, Piroddi N, et al. Mechanical and energetic consequences of HCM-causing mutations. J Cardiovasc Transl Res. 2009;2:441–51. [CrossRef] [PubMed] [Google Scholar]
- Ingwall JS, Weiss RG. Is the failing heart energy starved? Circ Res. 2004;95:135–45. [CrossRef] [PubMed] [Google Scholar]
- Wittig I, Meyer B, Heide H, et al. Assembly and oligomerization of human ATP synthase lacking mitochondrial subunits a and A6L. Biochim Biophys Acta. 2010;1797:1004–11. [CrossRef] [Google Scholar]
- Fernandez FG, Shahian FG, Kormos R, et al. The Society of Thoracic Surgeons National Database 2019 Annual Report. Ann Thorac Surg. 2019;108:1625–32. [CrossRef] [Google Scholar]
- Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res. 2004;61:372–85. [CrossRef] [Google Scholar]
- Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020;126:280–93. [CrossRef] [PubMed] [Google Scholar]
- Leung CH, Wang L, Fu YY, et al. Transient mitochondrial permeability transition pore opening after neonatal cardioplegic arrest. J Thorac Cardiovasc Surg. 2011;141:975–82. [CrossRef] [Google Scholar]
- Cung T, Morel O, Cayla G, et al. . Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021–31. [CrossRef] [PubMed] [Google Scholar]
- Amanakis G, Murphy E, Cyclophilin D. An integrator of mitochondrial function. Front Physiol. 2020;11:595. [CrossRef] [Google Scholar]
- Magnati MD, Rao V, Borger MA, et al. . Predictors of low cardiac output syndrome after isolated aortic valve surgery. Circulation. 2005;112:448–52. [Google Scholar]
- Estrada V, Franco D, Moreno A, et al. Postoperative right ventricular failure in cardiac surgery. Cardiol Res. 2016;7:185–95. [CrossRef] [PubMed] [Google Scholar]
- Gunaydin S, Akbay E, Gunertem OE, et al. . Long-term protective effects of single-dose cardioplegic solutions in cell culture models. J Extra Corpor Technol. 2020;52:279–88. [Google Scholar]
- O’Brien JD, Howlett SE, Burton HJ, et al. Pediatric cardioplegia strategy results in enhanced calcium metabolism and lower serum troponin T. Ann Thorac Surg. 2009;87:1517–23. [CrossRef] [Google Scholar]
- Talwar S, Bhoje A, Sreenivas V, et al. . Comparison of del Nido and St Thomas cardioplegia solutions in pediatric patients: A prospective randomized clinical trial. Semin Thorac Cardiovasc Surg. 2017;29:366–74. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.