Open Access
J Extra Corpor Technol
Volume 55, Number 1, March 2023
Page(s) 30 - 38
Published online 24 March 2023
  1. Margarit JAE, Pajares MA, García-Camacho C, Blanco-Morillo J (2020) Vía clínica de recuperación intensificada en cirugía cardiaca. Documento de consenso de la Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor (SEDAR), la Sociedad Española de Cirugía Cardiovascular y Endovascular (SECCE) y la Asociación Española de Perfusionistas (AEP). Cir Cardiovasc 13, 28. [Google Scholar]
  2. Jawitz OK, Bradford WT, McConnell G, Engel J, Allender JE, Williams JB (2020) How to start an enhanced recovery after surgery cardiac program. Crit Care Clin 36(4), 571–579. [CrossRef] [PubMed] [Google Scholar]
  3. Yazdchi F, Hirji S, Harloff M, et al. (2022) Enhanced recovery after cardiac surgery: a propensity-matched analysis. Semin Thorac Cardiovasc Surg 34(2), 585–594. [CrossRef] [PubMed] [Google Scholar]
  4. Puis L, Milojevic M, Boer C, et al. (2019) EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Interact CardioVasc Thorac Surg [Internet] 59, 12–53. [cited 2019 Nov 20]; Available from: [Google Scholar]
  5. Menkis AH, Martin J, Cheng DCH, et al. (2012) Drug, devices, technologies, and techniques for blood management in minimally invasive and conventional cardiothoracic surgery: a consensus statement from the International Society for Minimally Invasive Cardiothoracic Surgery (ISMICS) 2011. Innovations (Phila) 7(4), 229–241. [CrossRef] [PubMed] [Google Scholar]
  6. Tibi P, McClure RS, Huang J, et al. (2021) STS/SCA/AmSECT/SABM update to the clinical practice guidelines on patient blood management. Ann Thorac Surg 112(3), 981–1004. [CrossRef] [PubMed] [Google Scholar]
  7. Society of Thoracic Surgeons Blood Conservation Guideline Task Force, Ferraris VA, Brown JR, et al. (2011) 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg 91(3), 944–982. [CrossRef] [PubMed] [Google Scholar]
  8. Vranken NP, Babar ZU, Montoya JA, Weerwind PW (2020) Retrograde autologous priming to reduce allogeneic blood transfusion requirements: a systematic review. Perfusion 3, 267659119895474. [Google Scholar]
  9. Hagedorn C, Glogowski K, Valleley M, McQuiston L, Consbruck K (2019) Retrograde autologous priming technique to reduce hemodilution during cardiopulmonary bypass in the pediatric cardiac patient. J Extra Corpor Technol 51(2), 100–103. [PubMed] [Google Scholar]
  10. Balachandran S, Cross MH, Karthikeyan S, Mulpur A, Hansbro SD, Hobson P (2002) Retrograde autologous priming of the cardiopulmonary bypass circuit reduces blood transfusion after coronary artery surgery. Ann Thorac Surg 73(6), 1912–1918. [CrossRef] [PubMed] [Google Scholar]
  11. Rosengart TK, DeBois W, O’Hara M, et al. (1998) Retrograde autologous priming for cardiopulmonary bypass: a safe and effective means of decreasing hemodilution and transfusion requirements. J Thorac Cardiovasc Surg 115(2), 426–439. [CrossRef] [PubMed] [Google Scholar]
  12. Blanco-Morillo J, Arribas-Leal JM, Farina P, et al. (2021) Hematic antegrade repriming: a reproducible method to decrease the cardiopulmonary bypass insult. J Extra Corpor Technol 53(1), 75–79. [PubMed] [Google Scholar]
  13. Rodríguez-Chávez LL, Figueroa-Solano J, Muñoz-Consuegra CE, et al. (2017) EuroSCORE subestima el riesgo de mortalidad en cirugía cardiaca valvular de población mexicana. Archivos de cardiología de México 87(1), 18–25. [CrossRef] [Google Scholar]
  14. Vermeer H, Teerenstra S, de Sévaux RGL, van Swieten HA, Weerwind PW (2008) The effect of hemodilution during normothermic cardiac surgery on renal physiology and function: a review. Perfusion 23(6), 329–338. [CrossRef] [PubMed] [Google Scholar]
  15. Ho KM, Tan JA (2011) Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery: a systematic review. Cardiovasc Ther 29(4), 260–279. [CrossRef] [PubMed] [Google Scholar]
  16. Rajagopalan S, Mascha E, Na J, Sessler DI (2008) The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 108(1), 71–77. [CrossRef] [PubMed] [Google Scholar]
  17. Garrido MM, Kelley AS, Paris J, et al. (2014) Methods for constructing and assessing propensity scores. Health Serv Res 49(5), 1701–1720. [CrossRef] [PubMed] [Google Scholar]
  18. Stuart EA (2010) Matching methods for causal inference: A review and a look forward. Stat Sci 25(1), 1–21. [CrossRef] [PubMed] [Google Scholar]
  19. Rosenbaum PR, Rubin DB. 1983. The central role of the propensity score in observational studies for causal effects. Biometrika, Cambridge [Internet] 70, 41–55. [cited 2021 May 3]; Available from: [CrossRef] [Google Scholar]
  20. Blanco-Morillo J, Salmerón Martínez D, Morillo-Cuadrado DV, et al. (2022) Hematic antegrade repriming reduces emboli on cardiopulmonary bypass: a randomized controlled trial. ASAIO J 69, 324–331. [Google Scholar]
  21. Myers GJ, Wegner J (2017) Endothelial glycocalyx and cardiopulmonary bypass. J Extra Corpor Technol 49(3), 174–181. [PubMed] [Google Scholar]
  22. Koning NJ, de Lange F, Vonk ABA, et al. (2016) Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass: the role of hemodilution. Am J Physiol Heart Circ Physiol 310(5), H550–H558. [CrossRef] [PubMed] [Google Scholar]
  23. Wu Q, Gao W, Zhou J, et al. (2019) Correlation between acute degradation of the endothelial glycocalyx and microcirculation dysfunction during cardiopulmonary bypass in cardiac surgery. Microvasc Res 10(124), 37–42. [CrossRef] [PubMed] [Google Scholar]
  24. Giacinto O, Satriano U, Nenna A, et al. (2019) Inflammatory response and endothelial dysfunction following cardiopulmonary bypass: pathophysiology and pharmacological targets. Recent Pat Inflamm Allergy Drug Discov 13, 158–173. [CrossRef] [PubMed] [Google Scholar]
  25. De Rita F, Marchi D, Lucchese G, et al. (2013) Comparison between D901 Lilliput 1 and Kids D100 neonatal oxygenators: toward bypass circuit miniaturization. Artif Organs 37(1), E24–E28. [CrossRef] [PubMed] [Google Scholar]
  26. de Carvalho Filho EB, Marson FA de L, da Costa LNG, Antunes N (2014) Vacuum-assisted drainage in cardiopulmonary bypass: advantages and disadvantages. Rev Bras Cir Cardiovasc 29(2), 266–271. [PubMed] [Google Scholar]
  27. Dogné S, Flamion B (2020) Endothelial glycocalyx impairment in disease: focus on hyaluronan shedding. Am J Pathol 190(4), 768–780. [CrossRef] [PubMed] [Google Scholar]
  28. Anastasiadis K, Murkin J, Antonitsis P, et al. (2016) Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS). Interact Cardiovasc Thorac Surg 22(5), 647–662. [CrossRef] [PubMed] [Google Scholar]
  29. Ranucci M, Baryshnikova E (2019) Inflammation and coagulation following minimally invasive extracorporeal circulation technologies. J Thorac Dis 11(Suppl 10), S1480–S1488. [CrossRef] [PubMed] [Google Scholar]
  30. Kiessling AH, Keller H, Prospective Moritz A. 2018. Prospective, randomized un-blinded three arm controlled study in coronary artery revascularization with Minimal Invasive Extracorporeal Circulation Systems (MiECC): surrogate parameter analysis of biocompatibility. Heart Surg Forum. 21, E179–E186. [CrossRef] [Google Scholar]
  31. Engoren M, Schwann TA, Habib RH, Neill SN, Vance JL, Likosky DS (2014) The independent effects of anemia and transfusion on mortality after coronary artery bypass. Ann Thorac Surg 97(2), 514–520. [CrossRef] [PubMed] [Google Scholar]
  32. Kuduvalli M, Oo AY, Newall N, et al. (2005) Effect of peri-operative red blood cell transfusion on 30-day and 1-year mortality following coronary artery bypass surgery. Eur J Cardiothorac Surg 27(4), 592–598. [CrossRef] [PubMed] [Google Scholar]
  33. Loor G, Rajeswaran J, Li L, et al. (2013) The least of 3 evils: Exposure to red blood cell transfusion, anemia, or both? J Thorac Cardiovasc Surg 146(6), 1480–1487.e6. [CrossRef] [PubMed] [Google Scholar]
  34. de Hacienda Consejería (2019) Orden de 22 de febrero de 2019 de la Consejería de Hacienda, por la que se publican las tarifas de las tasas y precios públicos aplicables en el año 2019. BORM 6(6371), 6503. [Google Scholar]
  35. Kacker S, Frick KD, Tobian AAR (2013) The costs of transfusion: economic evaluations in transfusion medicine, Part 1. Transfusion 53(7), 1383–1385. [CrossRef] [PubMed] [Google Scholar]
  36. Shander A, Hofmann A, Ozawa S, Theusinger OM, Gombotz H, Spahn DR (2010) Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion 50(4), 753–765. [CrossRef] [PubMed] [Google Scholar]
  37. Barnett CL, Mladsi D, Vredenburg M, Aggarwal K (2018) Cost estimate of platelet transfusion in the United States for patients with chronic liver disease and associated thrombocytopenia undergoing elective procedures. J Med Econ 21(8), 827–834. [CrossRef] [PubMed] [Google Scholar]
  38. Shander A, Ozawa S, Hofmann A (2016) Activity-based costs of plasma transfusions in medical and surgical inpatients at a US hospital. Vox Sanguinis 111(1), 55–61. [CrossRef] [PubMed] [Google Scholar]
  39. Dasta JF, McLaughlin TP, Mody SH, Piech CT (2005) Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med 33(6), 1266–1271. [CrossRef] [PubMed] [Google Scholar]
  40. Nuttall GA, Houle TT (2008) Liars, damn liars, and propensity scores. Anesthesiology 108(1), 3–4. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.