Open Access
Review
Issue |
J Extra Corpor Technol
Volume 55, Number 4, December 2023
|
|
---|---|---|
Page(s) | 209 - 217 | |
DOI | https://doi.org/10.1051/ject/2023032 | |
Published online | 15 December 2023 |
- McDonagh DL, Berger M, Mathew JP, Graffagnino C, Milano CA, Newman MF (2014) Neurological complications of cardiac surgery. Lancet Neurol 13(5), 490–502. [CrossRef] [PubMed] [Google Scholar]
- Ono M, Joshi B, Brady K, Easley RB, Zheng Y, Brown C, et al. (2012) Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesth 109(3), 391–398. [CrossRef] [PubMed] [Google Scholar]
- Hori D, Brown C, Ono M, Rappold T, Sieber F, Gottschalk A, et al. (2014) Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth 113(6), 1009–1017. [CrossRef] [PubMed] [Google Scholar]
- Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, et al. (2013) Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med 41(2), 464–471. [CrossRef] [PubMed] [Google Scholar]
- Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39(2), 183–238. [CrossRef] [PubMed] [Google Scholar]
- Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28(3), 220–231. [CrossRef] [PubMed] [Google Scholar]
- Longhitano Y, Iannuzzi F, Bonatti G, Zanza C, Messina A, Godoy D, et al. (2021) Cerebral autoregulation in non-brain injured patients: a systematic review. Front Neurol 12, 732176. [CrossRef] [PubMed] [Google Scholar]
- Tzeng YC, Ainslie PN (2014) Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 114(3), 545–559. [CrossRef] [PubMed] [Google Scholar]
- del Zoppo GJ, Sharp FR, Heiss WD, Albers GW (2011) Heterogeneity in the penumbra. J Cereb Blood Flow Metab 31(9), 1836–1851. [CrossRef] [PubMed] [Google Scholar]
- Jones MD Jr., Traystman RJ, Simmons MA, Molteni RA (1981) Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol. 240(2), H209–H215. [PubMed] [Google Scholar]
- Claassen J, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101(4), 1487–1559. [CrossRef] [PubMed] [Google Scholar]
- Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26(6), 1014–1019. [CrossRef] [PubMed] [Google Scholar]
- Svenmarker S, Haggmark S, Johansson G, Axelsson B, Wiklund U, Haney M (2014) Regional changes in cerebral blood flow oxygenation can indicate global changes in cerebral blood flow during coronary artery occlusion in juvenile pigs. Physiol Meas 35(7), 1439–1450. [CrossRef] [PubMed] [Google Scholar]
- Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR (1994) Validation of near-infrared spectroscopy in humans. J Appl Physiol 77(6), 2740–2747. [CrossRef] [PubMed] [Google Scholar]
- Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, et al. (2010) Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 41(9), 1951–1956. [CrossRef] [PubMed] [Google Scholar]
- Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, et al. (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38(10), 2818–2825. [CrossRef] [PubMed] [Google Scholar]
- Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, et al. (2010) Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41(9), 1963–1968. [CrossRef] [PubMed] [Google Scholar]
- Brady KM, Mytar JO, Kibler KK, Hogue CW Jr., Lee JK, Czosnyka M, et al. (2010) Noninvasive autoregulation monitoring with and without intracranial pressure in the naive piglet brain. Anesth Analg 111(1), 191–195. [CrossRef] [PubMed] [Google Scholar]
- Vu EL, Brady K, Hogue CW (2022) High-resolution perioperative cerebral blood flow autoregulation measurement: a practical and feasible approach for widespread clinical monitoring. Br J Anaesth 128(3), 405–408. [CrossRef] [PubMed] [Google Scholar]
- Ghanayem NS, Wernovsky G, Hoffman GM (2011) Near-infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med 12(4 Suppl), S27–S32. [CrossRef] [PubMed] [Google Scholar]
- Heringlake M, Garbers C, Kabler JH, Anderson I, Heinze H, Schon J, et al. (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114(1), 58–69. [CrossRef] [PubMed] [Google Scholar]
- Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6), 769–774. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, et al. (2015) Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab 35(2), 248–256. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Akiyoshi K, Nakano M, Brady K, Bush B, Nadkarni R, et al. (2021) Determining thresholds for three indices of autoregulation to identify the lower limit of autoregulation during cardiac surgery. Crit Care Med 49(4), 650–660. [CrossRef] [PubMed] [Google Scholar]
- Lancaster G.L., Iatsenko D., Pidde A., Ticcinelli V., Stefanovska A. (2018) Surrogate data for hypothesis testing of physical systems. Phys Rep 748, 1–60. [CrossRef] [Google Scholar]
- Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1), 45–52. [CrossRef] [PubMed] [Google Scholar]
- Giller CA (1990) The frequency-dependent behavior of cerebral autoregulation. Neurosurgery 27(3), 362–368. [CrossRef] [PubMed] [Google Scholar]
- Panerai RB, Rennie JM, Kelsall AW, Evans DH (1998) Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med Biol Eng Comput 36(3), 315–322. [CrossRef] [PubMed] [Google Scholar]
- Melvin RL, Abella JR, Patel R, Hagood JM, Berkowitz DE, Mladinov D (2022) Intraoperative utilisation of high-resolution data for cerebral autoregulation: a feasibility study. Br J Anaesth 128(3), e217–e219. [CrossRef] [PubMed] [Google Scholar]
- Montgomery D, Brown C, Hogue CW, Brady K, Nakano M, Nomura Y, et al. (2020) Real-time intraoperative determination and reporting of cerebral autoregulation state using near-infrared spectroscopy. Anesth Analg 131(5), 1520–1528. [CrossRef] [PubMed] [Google Scholar]
- Meng L, Hou W, Chui J, Han R, Gelb AW (2015) Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology 123(5), 1198–1208. [CrossRef] [PubMed] [Google Scholar]
- Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S, et al. (2005) The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol 569(Pt 2), 697–704. [CrossRef] [PubMed] [Google Scholar]
- Zipfel J, Bantle SJ, Magunia H, Schlensak C, Neunhoeffer F, Schuhmann MU, et al. (2020) Non-invasive cerebral autoregulation monitoring during awake carotid endarterectomy identifies clinically significant brain ischaemia. Eur J Vasc Endovasc Surg. 60(5), 647–654. [CrossRef] [PubMed] [Google Scholar]
- Wikstrom MB, Smars M, Karlsson C, Stene Hurtsen A, Horer TM, Nilsson KF (2021) A randomized porcine study of the hemodynamic and metabolic effects of combined endovascular occlusion of the vena cava and the aorta in normovolemia and in hemorrhagic shock. J Trauma Acute Care Surg 90(5), 817–826. [CrossRef] [PubMed] [Google Scholar]
- Kapur NK, Reyelt L, Crowley P, Richey L, McCarthy J, Annamalai S, et al. (2020) Intermittent occlusion of the superior vena cava reduces cardiac filling pressures in preclinical models of heart failure. J Cardiovasc Transl Res 13(2), 151–157. [CrossRef] [PubMed] [Google Scholar]
- Patterson SW, Starling EH (1914) On the mechanical factors which determine the output of the ventricles. J Physiol. 48(5), 357–379. [CrossRef] [PubMed] [Google Scholar]
- Dexter L, Dow JW, Haynes FW, Whittenberger JL, Ferris BG, Goodale WT, et al. (1950) Studies of the pulmonary circulation in man at rest; normal variations and the interrelations between increased pulmonary blood flow, elevated pulmonary arterial pressure, and high pulmonary “capillary” pressures. J Clin Invest 29(5), 602–613. [CrossRef] [PubMed] [Google Scholar]
- Alston RP, Anderson A, Sanger K (2006) Is body surface area still the best way to determine pump flow rate during cardiopulmonary bypass? Perfusion 21(3), 139–147. [CrossRef] [PubMed] [Google Scholar]
- de Somer F, Mulholland JW, Bryan MR, Aloisio T, Van Nooten GJ, Ranucci M (2011) O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury: time for a goal-directed perfusion management? Crit Care 15(4), R192. [CrossRef] [PubMed] [Google Scholar]
- Svenmarker S, Haggmark S, Hultin M, Holmgren A (2010) Static blood-flow control during cardiopulmonary bypass is a compromise of oxygen delivery. Eur J Cardiothorac Surg 37(1), 218–222. [CrossRef] [PubMed] [Google Scholar]
- Heisler M, Hofer TP, Schmittdiel JA, Selby JV, Klamerus ML, Bosworth HB, et al. (2012) Improving blood pressure control through a clinical pharmacist outreach program in patients with diabetes mellitus in 2 high-performing health systems: the adherence and intensification of medications cluster randomized, controlled pragmatic trial. Circulation 125(23), 2863–2872. [CrossRef] [PubMed] [Google Scholar]
- Slater JM, Orszulak TA, Cook DJ (2001) Distribution and hierarchy of regional blood flow during hypothermic cardiopulmonary bypass. Ann Thorac Surg 72(2), 542–547. [CrossRef] [PubMed] [Google Scholar]
- Ševerdija EE, Gommer ED, Weerwind PW, Reulen JP, Mess WH, Maessen JG (2015) Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass. Med Biol Eng Comput 53(3), 195–203. [CrossRef] [PubMed] [Google Scholar]
- Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100(1), 328–335. [CrossRef] [PubMed] [Google Scholar]
- Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27(4), 484–492. [CrossRef] [PubMed] [Google Scholar]
- Brown C.H., Neufeld K.J., Tian J., Probert J., LaFlam A., Max L., et al. (2019) Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients: a nested randomized clinical trial. JAMA Surg 154(9), 819–826. [CrossRef] [PubMed] [Google Scholar]
- Chan B, Aneman A (2019) A prospective, observational study of cerebrovascular autoregulation and its association with delirium following cardiac surgery. Anaesthesia 74(1), 33–44. [CrossRef] [PubMed] [Google Scholar]
- Hori D, Ono M, Rappold TE, Conte JV, Shah AS, Cameron DE, et al. (2015) Hypotension after cardiac operations based on autoregulation monitoring leads to brain cellular injury. Ann Thorac Surg 100(2), 487–493. [CrossRef] [PubMed] [Google Scholar]
- Ono M, Brady K, Easley RB, Brown C, Kraut M, Gottesman RF, et al. (2014) Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg 147(1), 483–489. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.