Open Access
Issue
J Extra Corpor Technol
Volume 56, Number 4, December 2024
Page(s) 174 - 184
DOI https://doi.org/10.1051/ject/2024020
Published online 20 December 2024
  1. Sznycer-Taub NR, Lowery R, Yu S, Owens ST, Hirsch-Romano JC, Owens GE, Hyperoxia Is Associated With Poor Outcomes in Pediatric Cardiac Patients Supported on Venoarterial Extracorporeal Membrane Oxygenation. Pediatr Crit Care Med. 2016;17(4):350–358. [CrossRef] [PubMed] [Google Scholar]
  2. ELSO, Registry of the extracorporeal life support organization. Ann Arbor, ME: Registry Report. 2022. [Google Scholar]
  3. Debrunner MG, Porayette P, Breinholt JP 3rd, Turrentine MW, Cordes TM. Midterm survival of infants requiring postoperative extracorporeal membrane oxygenation after Norwood palliation. Pediatr Cardiol. 2013;34(3):570–575. [CrossRef] [PubMed] [Google Scholar]
  4. Friedland-Little JM, Hirsch-Romano JC, Yu S, et al. Risk factors for requiring extracorporeal membrane oxygenation support after a Norwood operation. J Thorac Cardiovasc Surg. 2014;148(1):266–272. [CrossRef] [PubMed] [Google Scholar]
  5. Bove EL. Current status of staged reconstruction for hypoplastic left heart syndrome. Pediatr Cardiol. 1998;19(4):308–315. [CrossRef] [PubMed] [Google Scholar]
  6. Mahle WT, Spray TL, Wernovsky G, Gaynor JW, Clark BJ, 3rd. Survival after reconstructive surgery for hypoplastic left heart syndrome: A 15-year experience from a single institution. Circulation. 2000;102(19 Suppl 3):Iii136–141. [CrossRef] [PubMed] [Google Scholar]
  7. Allan CK, Thiagarajan RR, del Nido PJ, Roth SJ, Almodovar MC, Laussen PC. Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 2007;133(3):660–667. [CrossRef] [PubMed] [Google Scholar]
  8. Ravishankar C, Dominguez TE, Kreutzer J, et al. Extracorporeal membrane oxygenation after stage I reconstruction for hypoplastic left heart syndrome. Pediatr Crit Care Med. 2006;7(4):319–323. [CrossRef] [PubMed] [Google Scholar]
  9. Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation. 2007;116(15):1693–1700. [CrossRef] [PubMed] [Google Scholar]
  10. Cashen K, Reeder R, Dalton HJ, et al. Hyperoxia and hypocapnia during pediatric extracorporeal membrane oxygenation: associations with complications, mortality, and functional status among survivors. Pediatr Crit Care Med. 2018;19(3):245–253. [CrossRef] [PubMed] [Google Scholar]
  11. Ni YN, Wang YM, Liang BM, Liang ZA. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19(1):53. [CrossRef] [PubMed] [Google Scholar]
  12. Bonnemain J, Rusca M, Ltaief Z, et al. Hyperoxia during extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest is associated with severe circulatory failure and increased mortality. BMC Cardiovasc Disord. 2021;21(1):542. [CrossRef] [PubMed] [Google Scholar]
  13. Brown DM, Holt DW, Edwards JT, Burnett RJ, 3rd. Normoxia vs. hyperoxia: impact of oxygen tension strategies on outcomes for patients receiving cardiopulmonary bypass for routine cardiac surgical repair. J Extra Corpor Technol. 2006;38(3):241–248. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Beshish AG, Jahadi O, Mello A, Yarlagadda VV, Shin AY, Kwiatkowski DM. Hyperoxia during cardiopulmonary bypass is associated with mortality in infants undergoing cardiac surgery. Pediatr Crit Care Med. 2021;22(5):445–453. [CrossRef] [PubMed] [Google Scholar]
  15. Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative stress and neonatal respiratory extracorporeal membrane oxygenation. Front Physiol. 2018;9:1739. [CrossRef] [PubMed] [Google Scholar]
  16. Lilien TA, Groeneveld NS, van Etten-Jamaludin F, Peters MJ, Buysse CMP, Ralston SL, van Woensel JBM, Bos LDJ, Bem RA. Association of arterial hyperoxia with outcomes in critically ill children: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(1):e2142105. [CrossRef] [PubMed] [Google Scholar]
  17. Stoll SE, Paul E, Pilcher D, Udy A, Burrell A. Hyperoxia and mortality in conventional versus extracorporeal cardiopulmonary resuscitation. J Crit Care. 2022;69:154001. [CrossRef] [PubMed] [Google Scholar]
  18. McDonald CI, Fraser JF, Coombes JS, Fung YL. Oxidative stress during extracorporeal circulation. Eur J Cardiothorac Surg. 2014;46(6):937–943. [CrossRef] [PubMed] [Google Scholar]
  19. Caputo M, Mokhtari A, Miceli A, Ghorbel MT, Angelini GD, Parry AJ, Suleiman SM. Controlled reoxygenation during cardiopulmonary bypass decreases markers of organ damage, inflammation, and oxidative stress in single-ventricle patients undergoing pediatric heart surgery. J Thorac Cardiovasc Surg. 2014;148(3):792–801.e798. Discussion 800–791. [CrossRef] [PubMed] [Google Scholar]
  20. Caputo M, Mokhtari A, Rogers CA, Panayiotou N, Chen Q, Ghorbel MT, Angelini GD, Parry AJ. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2009;138(1):206–214. [CrossRef] [PubMed] [Google Scholar]
  21. Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, Shapiro NI, Trzeciak S. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123(23):2717–2722. [CrossRef] [PubMed] [Google Scholar]
  22. Page D, Ablordeppey E, Wessman BT, Mohr NM, Trzeciak S, Kollef MH, Roberts BW, Fuller BM. Emergency department hyperoxia is associated with increased mortality in mechanically ventilated patients: a cohort study. Crit Care. 2018;22(1):9. [CrossRef] [PubMed] [Google Scholar]
  23. Davis DP, Meade W, Sise MJ, Kennedy F, Simon F, Tominaga G, Steele J, Coimbra R. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26(12):2217–2223. [CrossRef] [PubMed] [Google Scholar]
  24. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–830. [CrossRef] [PubMed] [Google Scholar]
  25. Novack V, Beitler JR, Yitshak-Sade M, Thompson BT, Schoenfeld DA, Rubenfeld G, Talmor D, Brown SM. Alive and ventilator free: a hierarchical, composite outcome for clinical trials in the acute respiratory distress syndrome. Crit Care Med. 2020;48(2):158–166. [CrossRef] [PubMed] [Google Scholar]
  26. Pollack MM, Holubkov R, Glass P, et al. Functional Status Scale: new pediatric outcome measure. Pediatrics. 2009;124(1):e18–28. [CrossRef] [PubMed] [Google Scholar]
  27. Berg RA, Nadkarni VM, Clark AE, et al. Incidence and outcomes of cardiopulmonary resuscitation in PICUs. Crit Care Med. 2016;44(4):798–808. [PubMed] [Google Scholar]
  28. Beshish AG, Baginski MR, Johnson TJ, Deatrick BK, Barbaro RP, Owens GE. Functional status change among children with extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in a pediatric cardiac ICU: A single institution report. Pediatr Crit Care Med. 2018;19(7):665–671. [CrossRef] [PubMed] [Google Scholar]
  29. Beshish AG, Rodriguez Z, Hani Farhat M, et al. Functional status change among infants, children, and adolescents following extracorporeal life support: a multicenter report. ASAIO J. 2022;69(1):114–121. [Google Scholar]
  30. Han B, Yang JK, Ling AY, Ma M, Kipps AK, Shin AY, Beshish AG, Early functional status after surgery for congenital heart disease: a single-center retrospective study. Pediatr Crit Care Med. 2022; 23(2):109–117. [CrossRef] [PubMed] [Google Scholar]
  31. Pollack MM, Holubkov R, Funai T, et al. Relationship between the functional status scale and the pediatric overall performance category and pediatric cerebral performance category scales. JAMA Pediatr. 2014;168(7):671–676. [CrossRef] [PubMed] [Google Scholar]
  32. Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S, Rosario-Rivera BL, Guyette FX, Rittenberger JC, Dezfulian C. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41(1):49–57. [CrossRef] [PubMed] [Google Scholar]
  33. Klinger G, Beyene J, Shah P, Perlman M. Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed. 2005;90(1):F49–52. [CrossRef] [PubMed] [Google Scholar]
  34. Rabi Y, Rabi D, Yee W, Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. resuscitation. 2007;72(3):353–363. [CrossRef] [PubMed] [Google Scholar]
  35. Raman S, Prince NJ, Hoskote A, Ray S, Peters MJ. Admission PaO2 and mortality in critically ill children: a cohort study and systematic review. Pediatr Crit Care Med. 2016;17(10):e444–e450. [CrossRef] [PubMed] [Google Scholar]
  36. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106(3):360–368. [CrossRef] [PubMed] [Google Scholar]
  37. Al-Kawaz MN, Canner J, Caturegli G, et al. Duration of hyperoxia and neurologic outcomes in patients undergoing extracorporeal membrane oxygenation. Crit Care Med. 2021;49(10):e968–e977. [CrossRef] [PubMed] [Google Scholar]
  38. Heinrichs J, Lodewyks C, Neilson C, Abou-Setta A, Grocott HP. The impact of hyperoxia on outcomes after cardiac surgery: a systematic review and narrative synthesis. Can J Anaesth. 2018;65(8):923–935. [CrossRef] [PubMed] [Google Scholar]
  39. Rodríguez-González R, Martín-Barrasa JL, Ramos-Nuez Á, et al. Multiple system organ response induced by hyperoxia in a clinically relevant animal model of sepsis. Shock. 2014;42(2):148–153. [CrossRef] [PubMed] [Google Scholar]
  40. DeFreitas MJ, Katsoufis CP, Benny M, Young K, Kulandavelu S, Ahn H, Sfakianaki A, Abitbol CL. Educational review: the impact of perinatal oxidative stress on the developing kidney. Front Pediatr. 2022;10:853722. [CrossRef] [PubMed] [Google Scholar]
  41. Menon RT, Shrestha AK, Reynolds CL, Barrios R, Shivanna B. Long-term pulmonary and cardiovascular morbidities of neonatal hyperoxia exposure in mice. Int J Biochem Cell Biol. 2018;94:119–124. [CrossRef] [PubMed] [Google Scholar]
  42. Kransdorf EP, Rushakoff JA, Han J, Benck L, et al. Donor hyperoxia is a novel risk factor for severe cardiac primary graft dysfunction. J Heart Lung Transplant. 2023;42(5):617–626. [CrossRef] [PubMed] [Google Scholar]
  43. Survival Rates by Procedure. https://choa.org/medical-services/heart-center/volumes-and-outcomes. [Google Scholar]
  44. Congenital Heart Surgery Public Reporting. https://publicreporting.sts.org/chsd-exp. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.